Visual Representation Learning Guided By Multi-modal Prior Knowledge
- URL: http://arxiv.org/abs/2410.15981v1
- Date: Mon, 21 Oct 2024 13:06:38 GMT
- Title: Visual Representation Learning Guided By Multi-modal Prior Knowledge
- Authors: Hongkuan Zhou, Lavdim Halilaj, Sebastian Monka, Stefan Schmid, Yuqicheng Zhu, Bo Xiong, Steffen Staab,
- Abstract summary: We propose Knowledge-Guided Visual representation learning (KGV) to improve generalization under distribution shift.
We use prior knowledge from two distinct modalities: 1) a knowledge graph (KG) with hierarchical and association relationships; and 2) generated synthetic images of visual elements semantically represented in the KG.
KGV consistently exhibits higher accuracy and data efficiency than the baselines across all experiments.
- Score: 29.954639194410586
- License:
- Abstract: Despite the remarkable success of deep neural networks (DNNs) in computer vision, they fail to remain high-performing when facing distribution shifts between training and testing data. In this paper, we propose Knowledge-Guided Visual representation learning (KGV), a distribution-based learning approach leveraging multi-modal prior knowledge, to improve generalization under distribution shift. We use prior knowledge from two distinct modalities: 1) a knowledge graph (KG) with hierarchical and association relationships; and 2) generated synthetic images of visual elements semantically represented in the KG. The respective embeddings are generated from the given modalities in a common latent space, i.e., visual embeddings from original and synthetic images as well as knowledge graph embeddings (KGEs). These embeddings are aligned via a novel variant of translation-based KGE methods, where the node and relation embeddings of the KG are modeled as Gaussian distributions and translations respectively. We claim that incorporating multi-model prior knowledge enables more regularized learning of image representations. Thus, the models are able to better generalize across different data distributions. We evaluate KGV on different image classification tasks with major or minor distribution shifts, namely road sign classification across datasets from Germany, China, and Russia, image classification with the mini-ImageNet dataset and its variants, as well as the DVM-CAR dataset. The results demonstrate that KGV consistently exhibits higher accuracy and data efficiency than the baselines across all experiments.
Related papers
- Dual Advancement of Representation Learning and Clustering for Sparse and Noisy Images [14.836487514037994]
Sparse and noisy images (SNIs) pose significant challenges for effective representation learning and clustering.
We propose Dual Advancement of Representation Learning and Clustering (DARLC) to enhance the representations derived from masked image modeling.
Our framework offers a comprehensive approach that improves the learning of representations by enhancing their local perceptibility, distinctiveness, and the understanding of relational semantics.
arXiv Detail & Related papers (2024-09-03T10:52:27Z) - Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
A prevalent strategy to bolster image classification performance is through augmenting the training set with synthetic images generated by T2I models.
In this study, we scrutinize the shortcomings of both current generative and conventional data augmentation techniques.
We introduce an innovative inter-class data augmentation method known as Diff-Mix, which enriches the dataset by performing image translations between classes.
arXiv Detail & Related papers (2024-03-28T17:23:45Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Exploiting the relationship between visual and textual features in
social networks for image classification with zero-shot deep learning [0.0]
In this work, we propose a classifier ensemble based on the transferable learning capabilities of the CLIP neural network architecture.
Our experiments, based on image classification tasks according to the labels of the Places dataset, are performed by first considering only the visual part.
Considering the associated texts to the images can help to improve the accuracy depending on the goal.
arXiv Detail & Related papers (2021-07-08T10:54:59Z) - Multimodal Contrastive Training for Visual Representation Learning [45.94662252627284]
We develop an approach to learning visual representations that embraces multimodal data.
Our method exploits intrinsic data properties within each modality and semantic information from cross-modal correlation simultaneously.
By including multimodal training in a unified framework, our method can learn more powerful and generic visual features.
arXiv Detail & Related papers (2021-04-26T19:23:36Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGR framework exploits prior knowledge of statistical label correlations with deep neural networks.
It first builds a structured knowledge graph to correlate different labels based on statistical label co-occurrence.
Then, it introduces the label semantics to guide learning semantic-specific features.
It exploits a graph propagation network to explore graph node interactions.
arXiv Detail & Related papers (2020-09-20T15:05:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.