Addressing Spectral Bias of Deep Neural Networks by Multi-Grade Deep Learning
- URL: http://arxiv.org/abs/2410.16105v1
- Date: Mon, 21 Oct 2024 15:34:33 GMT
- Title: Addressing Spectral Bias of Deep Neural Networks by Multi-Grade Deep Learning
- Authors: Ronglong Fang, Yuesheng Xu,
- Abstract summary: Deep neural networks (DNNs) exhibit a tendency to prioritize the learning of lower-frequency components of a function, struggling to capture its high-frequency features.
We propose to learn a function containing high-frequency components by composing several SNNs, each of which learns certain low-frequency information from the given data.
Our study reveals that MGDL excels at representing functions containing high-frequency information.
- Score: 3.0468273116892752
- License:
- Abstract: Deep neural networks (DNNs) suffer from the spectral bias, wherein DNNs typically exhibit a tendency to prioritize the learning of lower-frequency components of a function, struggling to capture its high-frequency features. This paper is to address this issue. Notice that a function having only low frequency components may be well-represented by a shallow neural network (SNN), a network having only a few layers. By observing that composition of low frequency functions can effectively approximate a high-frequency function, we propose to learn a function containing high-frequency components by composing several SNNs, each of which learns certain low-frequency information from the given data. We implement the proposed idea by exploiting the multi-grade deep learning (MGDL) model, a recently introduced model that trains a DNN incrementally, grade by grade, a current grade learning from the residue of the previous grade only an SNN composed with the SNNs trained in the preceding grades as features. We apply MGDL to synthetic, manifold, colored images, and MNIST datasets, all characterized by presence of high-frequency features. Our study reveals that MGDL excels at representing functions containing high-frequency information. Specifically, the neural networks learned in each grade adeptly capture some low-frequency information, allowing their compositions with SNNs learned in the previous grades effectively representing the high-frequency features. Our experimental results underscore the efficacy of MGDL in addressing the spectral bias inherent in DNNs. By leveraging MGDL, we offer insights into overcoming spectral bias limitation of DNNs, thereby enhancing the performance and applicability of deep learning models in tasks requiring the representation of high-frequency information. This study confirms that the proposed method offers a promising solution to address the spectral bias of DNNs.
Related papers
- A Hierarchical Fused Quantum Fuzzy Neural Network for Image Classification [8.7057403071943]
We proposed a novel hierarchical fused quantum fuzzy neural network (HQFNN)
HQFNN uses quantum neural networks to learn fuzzy membership functions in fuzzy neural network.
Results show that the proposed model can outperform several existing methods.
arXiv Detail & Related papers (2024-03-14T12:09:36Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Do deep neural networks have an inbuilt Occam's razor? [1.1470070927586016]
We show that structured data combined with an intrinsic Occam's razor-like inductive bias towards simple functions counteracts the exponential growth of functions with complexity.
This analysis reveals that structured data, combined with an intrinsic Occam's razor-like inductive bias towards (Kolmogorov) simple functions that is strong enough to counteract the exponential growth of functions with complexity, is a key to the success of DNNs.
arXiv Detail & Related papers (2023-04-13T16:58:21Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
Polynomial neural networks (PNNs) have been shown to be particularly effective at image generation and face recognition, where high-frequency information is critical.
Previous studies have revealed that neural networks demonstrate a $textitspectral bias$ towards low-frequency functions, which yields faster learning of low-frequency components during training.
Inspired by such studies, we conduct a spectral analysis of the Tangent Kernel (NTK) of PNNs.
We find that the $Pi$-Net family, i.e., a recently proposed parametrization of PNNs, speeds up the
arXiv Detail & Related papers (2022-02-27T23:12:43Z) - SAR Image Classification Based on Spiking Neural Network through
Spike-Time Dependent Plasticity and Gradient Descent [7.106664778883502]
Spiking neural network (SNN) is one of the core components of brain-like intelligence.
This article constructs a complete SAR image based on unsupervised and supervised learning SNN.
arXiv Detail & Related papers (2021-06-15T09:36:04Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
This paper proposes a deep time delay neural network (TDNN) for speech enhancement with full data learning.
To make full use of the training data, we propose a full data learning method for speech enhancement.
arXiv Detail & Related papers (2020-11-11T06:32:37Z) - Block-term Tensor Neural Networks [29.442026567710435]
We show that block-term tensor layers (BT-layers) can be easily adapted to neural network models, such as CNNs and RNNs.
BT-layers in CNNs and RNNs can achieve a very large compression ratio on the number of parameters while preserving or improving the representation power of the original DNNs.
arXiv Detail & Related papers (2020-10-10T09:58:43Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.