Allo-AVA: A Large-Scale Multimodal Conversational AI Dataset for Allocentric Avatar Gesture Animation
- URL: http://arxiv.org/abs/2410.16503v1
- Date: Mon, 21 Oct 2024 20:50:51 GMT
- Title: Allo-AVA: A Large-Scale Multimodal Conversational AI Dataset for Allocentric Avatar Gesture Animation
- Authors: Saif Punjwani, Larry Heck,
- Abstract summary: Allo-AVA is a dataset specifically designed for text and audio-driven avatar gesture animation in an allocentric (third person point-of-view) context.
This resource enables the development and evaluation of more natural, context-aware avatar animation models.
- Score: 1.9797215742507548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The scarcity of high-quality, multimodal training data severely hinders the creation of lifelike avatar animations for conversational AI in virtual environments. Existing datasets often lack the intricate synchronization between speech, facial expressions, and body movements that characterize natural human communication. To address this critical gap, we introduce Allo-AVA, a large-scale dataset specifically designed for text and audio-driven avatar gesture animation in an allocentric (third person point-of-view) context. Allo-AVA consists of $\sim$1,250 hours of diverse video content, complete with audio, transcripts, and extracted keypoints. Allo-AVA uniquely maps these keypoints to precise timestamps, enabling accurate replication of human movements (body and facial gestures) in synchronization with speech. This comprehensive resource enables the development and evaluation of more natural, context-aware avatar animation models, potentially transforming applications ranging from virtual reality to digital assistants.
Related papers
- Multi-human Interactive Talking Dataset [20.920129008402718]
We introduce MIT, a large-scale dataset specifically designed for multi-human talking video generation.<n>The resulting dataset comprises 12 hours of high-resolution footage, each featuring two to four speakers.<n>It captures natural conversational dynamics in multi-speaker scenario, offering a rich resource for studying interactive visual behaviors.
arXiv Detail & Related papers (2025-08-05T03:54:18Z) - VisualSpeaker: Visually-Guided 3D Avatar Lip Synthesis [70.76837748695841]
We propose VisualSpeaker, a novel method that bridges the gap using photorealistic differentiable rendering, supervised by visual speech recognition, for improved 3D facial animation.<n>Our contribution is a perceptual lip-reading loss, derived by passing 3D Gaussian Splatting avatar renders through a pre-trained Visual Automatic Speech Recognition model during training.<n> Evaluation on the MEAD dataset demonstrates that VisualSpeaker improves both the standard Lip Vertex Error metric by 56.1% and the perceptual quality of the generated animations, while retaining the controllability of mesh-driven animation.
arXiv Detail & Related papers (2025-07-08T15:04:17Z) - Seamless Interaction: Dyadic Audiovisual Motion Modeling and Large-Scale Dataset [113.25650486482762]
We introduce the Seamless Interaction dataset, a large-scale collection of over 4,000 hours of face-to-face interaction footage.<n>This dataset enables the development of AI technologies that understand dyadic embodied dynamics.<n>We develop a suite of models that utilize the dataset to generate dyadic motion gestures and facial expressions aligned with human speech.
arXiv Detail & Related papers (2025-06-27T18:09:49Z) - OmniAvatar: Efficient Audio-Driven Avatar Video Generation with Adaptive Body Animation [11.71823020976487]
We introduce OmniAvatar, an audio-driven full-body video generation model.<n>It enhances human animation with improved lip-sync accuracy and natural movements.<n>Experiments show it surpasses existing models in both facial and semi-body video generation.
arXiv Detail & Related papers (2025-06-23T17:33:03Z) - SmartAvatar: Text- and Image-Guided Human Avatar Generation with VLM AI Agents [91.26239311240873]
SmartAvatar is a vision-language-agent-driven framework for generating fully rigged, animation-ready 3D human avatars.<n>A key innovation is an autonomous verification loop, where the agent renders draft avatars.<n>The generated avatars are fully rigged and support pose manipulation with consistent identity and appearance.
arXiv Detail & Related papers (2025-06-05T03:49:01Z) - TaoAvatar: Real-Time Lifelike Full-Body Talking Avatars for Augmented Reality via 3D Gaussian Splatting [4.011241510647248]
We present TaoAvatar, a high-fidelity, lightweight, 3DGS-based full-body talking avatar driven by various signals.
We show that TaoAvatar achieves state-of-the-art rendering quality while running in real-time across various devices, maintaining 90 FPS on high-definition stereo devices such as the Apple Vision Pro.
arXiv Detail & Related papers (2025-03-21T10:40:37Z) - GaussianSpeech: Audio-Driven Gaussian Avatars [76.10163891172192]
We introduce GaussianSpeech, a novel approach that synthesizes high-fidelity animation sequences of photo-realistic, personalized 3D human head avatars from spoken audio.
We propose a compact and efficient 3DGS-based avatar representation that generates expression-dependent color and leverages wrinkle- and perceptually-based losses to synthesize facial details.
arXiv Detail & Related papers (2024-11-27T18:54:08Z) - AvatarGO: Zero-shot 4D Human-Object Interaction Generation and Animation [60.5897687447003]
AvatarGO is a novel framework designed to generate realistic 4D HOI scenes from textual inputs.
Our framework not only generates coherent compositional motions, but also exhibits greater robustness in handling issues.
As the first attempt to synthesize 4D avatars with object interactions, we hope AvatarGO could open new doors for human-centric 4D content creation.
arXiv Detail & Related papers (2024-10-09T17:58:56Z) - AniTalker: Animate Vivid and Diverse Talking Faces through Identity-Decoupled Facial Motion Encoding [24.486705010561067]
The paper introduces AniTalker, a framework designed to generate lifelike talking faces from a single portrait.
AniTalker effectively captures a wide range of facial dynamics, including subtle expressions and head movements.
arXiv Detail & Related papers (2024-05-06T02:32:41Z) - From Audio to Photoreal Embodiment: Synthesizing Humans in Conversations [107.88375243135579]
Given speech audio, we output multiple possibilities of gestural motion for an individual, including face, body, and hands.
We visualize the generated motion using highly photorealistic avatars that can express crucial nuances in gestures.
Experiments show our model generates appropriate and diverse gestures, outperforming both diffusion- and VQ-only methods.
arXiv Detail & Related papers (2024-01-03T18:55:16Z) - Attention-Based VR Facial Animation with Visual Mouth Camera Guidance
for Immersive Telepresence Avatars [19.70403947793871]
We present a hybrid method that uses both keypoints and direct visual guidance from a mouth camera.
Our method generalizes to unseen operators and requires only a quick enrolment step with capture of two short videos.
We highlight how the facial animation contributed to our victory at the ANA Avatar XPRIZE Finals.
arXiv Detail & Related papers (2023-12-15T12:45:11Z) - Physics-based Motion Retargeting from Sparse Inputs [73.94570049637717]
Commercial AR/VR products consist only of a headset and controllers, providing very limited sensor data of the user's pose.
We introduce a method to retarget motions in real-time from sparse human sensor data to characters of various morphologies.
We show that the avatar poses often match the user surprisingly well, despite having no sensor information of the lower body available.
arXiv Detail & Related papers (2023-07-04T21:57:05Z) - HSPACE: Synthetic Parametric Humans Animated in Complex Environments [67.8628917474705]
We build a large-scale photo-realistic dataset, Human-SPACE, of animated humans placed in complex indoor and outdoor environments.
We combine a hundred diverse individuals of varying ages, gender, proportions, and ethnicity, with hundreds of motions and scenes, in order to generate an initial dataset of over 1 million frames.
Assets are generated automatically, at scale, and are compatible with existing real time rendering and game engines.
arXiv Detail & Related papers (2021-12-23T22:27:55Z) - Learning Speech-driven 3D Conversational Gestures from Video [106.15628979352738]
We propose the first approach to automatically and jointly synthesize both the synchronous 3D conversational body and hand gestures.
Our algorithm uses a CNN architecture that leverages the inherent correlation between facial expression and hand gestures.
We also contribute a new way to create a large corpus of more than 33 hours of annotated body, hand, and face data from in-the-wild videos of talking people.
arXiv Detail & Related papers (2021-02-13T01:05:39Z) - Audio- and Gaze-driven Facial Animation of Codec Avatars [149.0094713268313]
We describe the first approach to animate Codec Avatars in real-time using audio and/or eye tracking.
Our goal is to display expressive conversations between individuals that exhibit important social signals.
arXiv Detail & Related papers (2020-08-11T22:28:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.