ReLU neural network approximation to piecewise constant functions
- URL: http://arxiv.org/abs/2410.16506v1
- Date: Mon, 21 Oct 2024 20:58:34 GMT
- Title: ReLU neural network approximation to piecewise constant functions
- Authors: Zhiqiang Cai, Junpyo Choi, Min Liu,
- Abstract summary: We show that a three-layer ReLU NN is sufficient to accurately approximate any piecewise constant function.
If the discontinuity interface is convex, an analytical formula of the ReLU NN approximation with exact weights and biases is provided.
- Score: 3.5928501649873326
- License:
- Abstract: This paper studies the approximation property of ReLU neural networks (NNs) to piecewise constant functions with unknown interfaces in bounded regions in $\mathbb{R}^d$. Under the assumption that the discontinuity interface $\Gamma$ may be approximated by a connected series of hyperplanes with a prescribed accuracy $\varepsilon >0$, we show that a three-layer ReLU NN is sufficient to accurately approximate any piecewise constant function and establish its error bound. Moreover, if the discontinuity interface is convex, an analytical formula of the ReLU NN approximation with exact weights and biases is provided.
Related papers
- Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces [0.0]
We consider the approximation of a large class of bounded functions, with minimal regularity assumptions, by ReLU neural networks.
We show that the approximation error can be bounded from above by a quantity proportional to the uniform norm of the target function.
arXiv Detail & Related papers (2024-05-10T14:31:58Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Polynomial-Time Solutions for ReLU Network Training: A Complexity
Classification via Max-Cut and Zonotopes [70.52097560486683]
We prove that the hardness of approximation of ReLU networks not only mirrors the complexity of the Max-Cut problem but also, in certain special cases, exactly corresponds to it.
In particular, when $epsilonleqsqrt84/83-1approx 0.006$, we show that it is NP-hard to find an approximate global dataset of the ReLU network objective with relative error $epsilon$ with respect to the objective value.
arXiv Detail & Related papers (2023-11-18T04:41:07Z) - Approximation Results for Gradient Descent trained Neural Networks [0.0]
The networks are fully connected constant depth increasing width.
The continuous kernel error norm implies an approximation under the natural smoothness assumption required for smooth functions.
arXiv Detail & Related papers (2023-09-09T18:47:55Z) - The Implicit Bias of Minima Stability in Multivariate Shallow ReLU
Networks [53.95175206863992]
We study the type of solutions to which gradient descent converges when used to train a single hidden-layer multivariate ReLU network with the quadratic loss.
We prove that although shallow ReLU networks are universal approximators, stable shallow networks are not.
arXiv Detail & Related papers (2023-06-30T09:17:39Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Approximation of Nonlinear Functionals Using Deep ReLU Networks [7.876115370275732]
We investigate the approximation power of functional deep neural networks associated with the rectified linear unit (ReLU) activation function.
In addition, we establish rates of approximation of the proposed functional deep ReLU networks under mild regularity conditions.
arXiv Detail & Related papers (2023-04-10T08:10:11Z) - Optimal Approximation Complexity of High-Dimensional Functions with
Neural Networks [3.222802562733787]
We investigate properties of neural networks that use both ReLU and $x2$ as activation functions.
We show how to leverage low local dimensionality in some contexts to overcome the curse of dimensionality, obtaining approximation rates that are optimal for unknown lower-dimensional subspaces.
arXiv Detail & Related papers (2023-01-30T17:29:19Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Least-Squares ReLU Neural Network (LSNN) Method For Linear
Advection-Reaction Equation [3.6525914200522656]
This paper studies least-squares ReLU neural network method for solving the linear advection-reaction problem with discontinuous solution.
The method is capable of approximating the discontinuous interface of the underlying problem automatically through the free hyper-planes of the ReLU neural network.
arXiv Detail & Related papers (2021-05-25T03:13:15Z) - Deep neural network approximation of analytic functions [91.3755431537592]
entropy bound for the spaces of neural networks with piecewise linear activation functions.
We derive an oracle inequality for the expected error of the considered penalized deep neural network estimators.
arXiv Detail & Related papers (2021-04-05T18:02:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.