Convex Markov Games: A Framework for Fairness, Imitation, and Creativity in Multi-Agent Learning
- URL: http://arxiv.org/abs/2410.16600v1
- Date: Tue, 22 Oct 2024 00:55:04 GMT
- Title: Convex Markov Games: A Framework for Fairness, Imitation, and Creativity in Multi-Agent Learning
- Authors: Ian Gemp, Andreas Haupt, Luke Marris, Siqi Liu, Georgios Piliouras,
- Abstract summary: We introduce the class of convex Markov games that allow general convex preferences over occupancy measures.
Despite infinite time horizon and strictly higher generality than Markov games, pure strategy Nash equilibria exist under strict convexity.
Our experiments imitate human choices in ultimatum games, reveal novel solutions to the repeated prisoner's dilemma, and find fair solutions in a repeated asymmetric coordination game.
- Score: 31.958202912400925
- License:
- Abstract: Expert imitation, behavioral diversity, and fairness preferences give rise to preferences in sequential decision making domains that do not decompose additively across time. We introduce the class of convex Markov games that allow general convex preferences over occupancy measures. Despite infinite time horizon and strictly higher generality than Markov games, pure strategy Nash equilibria exist under strict convexity. Furthermore, equilibria can be approximated efficiently by performing gradient descent on an upper bound of exploitability. Our experiments imitate human choices in ultimatum games, reveal novel solutions to the repeated prisoner's dilemma, and find fair solutions in a repeated asymmetric coordination game. In the prisoner's dilemma, our algorithm finds a policy profile that deviates from observed human play only slightly, yet achieves higher per-player utility while also being three orders of magnitude less exploitable.
Related papers
- Optimistic Policy Gradient in Multi-Player Markov Games with a Single
Controller: Convergence Beyond the Minty Property [89.96815099996132]
We develop a new framework to characterize optimistic policy gradient methods in multi-player games with a single controller.
Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games.
arXiv Detail & Related papers (2023-12-19T11:34:10Z) - Soft-Bellman Equilibrium in Affine Markov Games: Forward Solutions and
Inverse Learning [37.176741793213694]
We formulate a class of Markov games, termed affine Markov games, where an affine reward function couples the players' actions.
We introduce a novel solution concept, the soft-Bellman equilibrium, where each player is boundedly rational and chooses a soft-Bellman policy.
We then solve the inverse game problem of inferring the players' reward parameters from observed state-action trajectories via a projected-gradient algorithm.
arXiv Detail & Related papers (2023-03-31T22:50:47Z) - Hardness of Independent Learning and Sparse Equilibrium Computation in
Markov Games [70.19141208203227]
We consider the problem of decentralized multi-agent reinforcement learning in Markov games.
We show that no algorithm attains no-regret in general-sum games when executed independently by all players.
We show that our lower bounds hold even for seemingly easier setting in which all agents are controlled by a centralized algorithm.
arXiv Detail & Related papers (2023-03-22T03:28:12Z) - Differentiable Arbitrating in Zero-sum Markov Games [59.62061049680365]
We study how to perturb the reward in a zero-sum Markov game with two players to induce a desirable Nash equilibrium, namely arbitrating.
The lower level requires solving the Nash equilibrium under a given reward function, which makes the overall problem challenging to optimize in an end-to-end way.
We propose a backpropagation scheme that differentiates through the Nash equilibrium, which provides the gradient feedback for the upper level.
arXiv Detail & Related papers (2023-02-20T16:05:04Z) - Offline Learning in Markov Games with General Function Approximation [22.2472618685325]
We study offline multi-agent reinforcement learning (RL) in Markov games.
We provide the first framework for sample-efficient offline learning in Markov games.
arXiv Detail & Related papers (2023-02-06T05:22:27Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
We study the problem of computing an approximate Nash equilibrium of continuous-action game without access to gradients.
We model players' strategies using artificial neural networks.
This paper is the first to solve general continuous-action games with unrestricted mixed strategies and without any gradient information.
arXiv Detail & Related papers (2022-11-29T05:16:41Z) - Efficiently Computing Nash Equilibria in Adversarial Team Markov Games [19.717850955051837]
We introduce a class of games in which a team identically players is competing against an adversarial player.
This setting allows for a unifying treatment of zero-sum Markov games potential games.
Our main contribution is the first algorithm for computing stationary $epsilon$-approximate Nash equilibria in adversarial team Markov games.
arXiv Detail & Related papers (2022-08-03T16:41:01Z) - Regret Minimization and Convergence to Equilibria in General-sum Markov
Games [57.568118148036376]
We present the first algorithm for learning in general-sum Markov games that provides sublinear regret guarantees when executed by all agents.
Our algorithm is decentralized, computationally efficient, and does not require any communication between agents.
arXiv Detail & Related papers (2022-07-28T16:27:59Z) - Learning Zero-Sum Simultaneous-Move Markov Games Using Function
Approximation and Correlated Equilibrium [116.56359444619441]
We develop provably efficient reinforcement learning algorithms for two-player zero-sum finite-horizon Markov games.
In the offline setting, we control both players and aim to find the Nash Equilibrium by minimizing the duality gap.
In the online setting, we control a single player playing against an arbitrary opponent and aim to minimize the regret.
arXiv Detail & Related papers (2020-02-17T17:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.