MPT: A Large-scale Multi-Phytoplankton Tracking Benchmark
- URL: http://arxiv.org/abs/2410.16695v1
- Date: Tue, 22 Oct 2024 04:57:28 GMT
- Title: MPT: A Large-scale Multi-Phytoplankton Tracking Benchmark
- Authors: Yang Yu, Yuezun Li, Xin Sun, Junyu Dong,
- Abstract summary: We propose a benchmark dataset, Multiple Phytoplankton Tracking (MPT), which covers diverse background information and variations in motion during observation.
The dataset includes 27 species of phytoplankton and zooplankton, 14 different backgrounds to simulate diverse and complex underwater environments, and a total of 140 videos.
We introduce an additional feature extractor to predict the residuals of the standard feature extractor's output, and compute multi-scale frame-to-frame similarity based on features from different layers of the extractor.
- Score: 36.37530623015916
- License:
- Abstract: Phytoplankton are a crucial component of aquatic ecosystems, and effective monitoring of them can provide valuable insights into ocean environments and ecosystem changes. Traditional phytoplankton monitoring methods are often complex and lack timely analysis. Therefore, deep learning algorithms offer a promising approach for automated phytoplankton monitoring. However, the lack of large-scale, high-quality training samples has become a major bottleneck in advancing phytoplankton tracking. In this paper, we propose a challenging benchmark dataset, Multiple Phytoplankton Tracking (MPT), which covers diverse background information and variations in motion during observation. The dataset includes 27 species of phytoplankton and zooplankton, 14 different backgrounds to simulate diverse and complex underwater environments, and a total of 140 videos. To enable accurate real-time observation of phytoplankton, we introduce a multi-object tracking method, Deviation-Corrected Multi-Scale Feature Fusion Tracker(DSFT), which addresses issues such as focus shifts during tracking and the loss of small target information when computing frame-to-frame similarity. Specifically, we introduce an additional feature extractor to predict the residuals of the standard feature extractor's output, and compute multi-scale frame-to-frame similarity based on features from different layers of the extractor. Extensive experiments on the MPT have demonstrated the validity of the dataset and the superiority of DSFT in tracking phytoplankton, providing an effective solution for phytoplankton monitoring.
Related papers
- PhyTracker: An Online Tracker for Phytoplankton [36.37513641359679]
PhyTracker is an in situ tracking framework designed for automatic tracking of phytoplankton.
Our method incorporates three innovative modules: a Texture-enhanced Feature Extraction (TFE) module, an Attention-enhanced Temporal Association (ATA) module, and a Flow-agnostic Movement Refinement (FMR) module.
arXiv Detail & Related papers (2024-06-29T07:53:47Z) - Deep-learning-powered data analysis in plankton ecology [31.874825130479174]
The implementation of deep learning algorithms has brought new perspectives to plankton ecology.
Deep learning offers objective schemes to investigate plankton organisms in diverse environments.
arXiv Detail & Related papers (2023-09-15T16:04:11Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
This paper presents a new dataset and general tracker enhancement method for Underwater Visual Object Tracking (UVOT)
It poses distinct challenges; the underwater environment exhibits non-uniform lighting conditions, low visibility, lack of sharpness, low contrast, camouflage, and reflections from suspended particles.
We propose a novel underwater image enhancement algorithm designed specifically to boost tracking quality.
The method has resulted in a significant performance improvement, of up to 5.0% AUC, of state-of-the-art (SOTA) visual trackers.
arXiv Detail & Related papers (2023-08-30T07:41:26Z) - Towards Phytoplankton Parasite Detection Using Autoencoders [0.06234523779509325]
We propose an unsupervised anomaly detection system based on the similarity of the original and autoencoder-reconstructed samples.
We were able to reach an overall F1 score of 0.75 in nine phytoplankton species.
arXiv Detail & Related papers (2023-03-15T16:35:58Z) - Plankton-FL: Exploration of Federated Learning for Privacy-Preserving
Training of Deep Neural Networks for Phytoplankton Classification [81.04987357598802]
In this study, we explore the feasibility of leveraging federated learning for privacy-preserving training of deep neural networks for phytoplankton classification.
We simulate two different federated learning frameworks, federated learning (FL) and mutually exclusive FL (ME-FL)
Experimental results from this study demonstrate the feasibility and potential of federated learning for phytoplankton monitoring.
arXiv Detail & Related papers (2022-12-18T02:11:03Z) - Efficient Unsupervised Learning for Plankton Images [12.447149371717]
Monitoring plankton populations in situ is fundamental to preserve the aquatic ecosystem.
The adoption of machine learning algorithms to classify such data may be affected by the significant cost of manual annotation.
We propose an efficient unsupervised learning pipeline to provide accurate classification of plankton microorganisms.
arXiv Detail & Related papers (2022-09-14T15:33:16Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - Deep Learning Classification of Lake Zooplankton [0.0]
We present a set of deep learning models developed for the identification of lake plankton.
To this aim, we annotated into 35 classes over 17900 images of zooplankton and large phytoplankton colonies.
Our best models were based on transfer learning and ensembling, which classified plankton images with 98% accuracy and 93% F1 score.
arXiv Detail & Related papers (2021-08-11T14:57:43Z) - Movement Tracks for the Automatic Detection of Fish Behavior in Videos [63.85815474157357]
We offer a dataset of sablefish (Anoplopoma fimbria) startle behaviors in underwater videos, and investigate the use of deep learning (DL) methods for behavior detection on it.
Our proposed detection system identifies fish instances using DL-based frameworks, determines trajectory tracks, derives novel behavior-specific features, and employs Long Short-Term Memory (LSTM) networks to identify startle behavior in sablefish.
arXiv Detail & Related papers (2020-11-28T05:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.