LLM-Assisted Red Teaming of Diffusion Models through "Failures Are Fated, But Can Be Faded"
- URL: http://arxiv.org/abs/2410.16738v1
- Date: Tue, 22 Oct 2024 06:46:09 GMT
- Title: LLM-Assisted Red Teaming of Diffusion Models through "Failures Are Fated, But Can Be Faded"
- Authors: Som Sagar, Aditya Taparia, Ransalu Senanayake,
- Abstract summary: "Failures are fated, but can be faded" is a framework to explore and construct the failure landscape in pre-trained generative models.
We show how to restructure the failure landscape to be more desirable by moving away from the discovered failure modes.
- Score: 7.736445799116692
- License:
- Abstract: In large deep neural networks that seem to perform surprisingly well on many tasks, we also observe a few failures related to accuracy, social biases, and alignment with human values, among others. Therefore, before deploying these models, it is crucial to characterize this failure landscape for engineers to debug or audit models. Nevertheless, it is infeasible to exhaustively test for all possible combinations of factors that could lead to a model's failure. In this paper, we improve the "Failures are fated, but can be faded" framework (arXiv:2406.07145)--a post-hoc method to explore and construct the failure landscape in pre-trained generative models--with a variety of deep reinforcement learning algorithms, screening tests, and LLM-based rewards and state generation. With the aid of limited human feedback, we then demonstrate how to restructure the failure landscape to be more desirable by moving away from the discovered failure modes. We empirically demonstrate the effectiveness of the proposed method on diffusion models. We also highlight the strengths and weaknesses of each algorithm in identifying failure modes.
Related papers
- SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - Failures Are Fated, But Can Be Faded: Characterizing and Mitigating Unwanted Behaviors in Large-Scale Vision and Language Models [7.736445799116692]
In large deep neural networks that seem to perform surprisingly well on many tasks, we also observe a few failures related to accuracy, social biases, and alignment with human values.
We introduce a post-hoc method that utilizes emphdeep reinforcement learning to explore and construct the landscape of failure modes in pre-trained discriminative and generative models.
We empirically show the effectiveness of the proposed method across common Computer Vision, Natural Language Processing, and Vision-Language tasks.
arXiv Detail & Related papers (2024-06-11T10:45:41Z) - Degradation Modeling and Prognostic Analysis Under Unknown Failure Modes [17.72961616186932]
operating units often experience various failure modes in complex systems.
Current prognostic approaches either ignore failure modes during degradation or assume known failure mode labels.
High dimensionality and complex relations of sensor signals make it challenging to identify the failure modes accurately.
arXiv Detail & Related papers (2024-02-29T15:57:09Z) - Identifying and Mitigating Model Failures through Few-shot CLIP-aided
Diffusion Generation [65.268245109828]
We propose an end-to-end framework to generate text descriptions of failure modes associated with spurious correlations.
These descriptions can be used to generate synthetic data using generative models, such as diffusion models.
Our experiments have shown remarkable textbfimprovements in accuracy ($sim textbf21%$) on hard sub-populations.
arXiv Detail & Related papers (2023-12-09T04:43:49Z) - Lightweight Diffusion Models with Distillation-Based Block Neural
Architecture Search [55.41583104734349]
We propose to automatically remove structural redundancy in diffusion models with our proposed Diffusion Distillation-based Block-wise Neural Architecture Search (NAS)
Given a larger pretrained teacher, we leverage DiffNAS to search for the smallest architecture which can achieve on-par or even better performance than the teacher.
Different from previous block-wise NAS methods, DiffNAS contains a block-wise local search strategy and a retraining strategy with a joint dynamic loss.
arXiv Detail & Related papers (2023-11-08T12:56:59Z) - RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment [32.752633250862694]
Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data.
We introduce a new framework, Reward rAnked FineTuning, designed to align generative models effectively.
arXiv Detail & Related papers (2023-04-13T18:22:40Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
We study the extent to which variations in the choice of probabilistic divergence may yield more performant ILO algorithms.
We contribute a re parameterization trick for adversarial imitation learning to alleviate the challenges of the promising $f$-divergence minimization framework.
Empirically, we demonstrate that our design choices allow for ILO algorithms that outperform baseline approaches and more closely match expert performance in low-dimensional continuous-control tasks.
arXiv Detail & Related papers (2020-06-18T19:04:09Z) - Bootstrapped model learning and error correction for planning with
uncertainty in model-based RL [1.370633147306388]
A natural aim is to learn a model that reflects accurately the dynamics of the environment.
This paper explores the problem of model misspecification through uncertainty-aware reinforcement learning agents.
We propose a bootstrapped multi-headed neural network that learns the distribution of future states and rewards.
arXiv Detail & Related papers (2020-04-15T15:41:21Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.