The Scene Language: Representing Scenes with Programs, Words, and Embeddings
- URL: http://arxiv.org/abs/2410.16770v1
- Date: Tue, 22 Oct 2024 07:40:20 GMT
- Title: The Scene Language: Representing Scenes with Programs, Words, and Embeddings
- Authors: Yunzhi Zhang, Zizhang Li, Matt Zhou, Shangzhe Wu, Jiajun Wu,
- Abstract summary: We introduce the Scene Language, a visual scene representation that concisely and precisely describes the structure, semantics, and identity of visual scenes.
It represents a scene with three key components: a program that specifies the hierarchical and relational structure of entities in the scene, words in natural language that summarize the semantic class of each entity, and embeddings that capture the visual identity of each entity.
- Score: 23.707974056165042
- License:
- Abstract: We introduce the Scene Language, a visual scene representation that concisely and precisely describes the structure, semantics, and identity of visual scenes. It represents a scene with three key components: a program that specifies the hierarchical and relational structure of entities in the scene, words in natural language that summarize the semantic class of each entity, and embeddings that capture the visual identity of each entity. This representation can be inferred from pre-trained language models via a training-free inference technique, given text or image inputs. The resulting scene can be rendered into images using traditional, neural, or hybrid graphics renderers. Together, this forms a robust, automated system for high-quality 3D and 4D scene generation. Compared with existing representations like scene graphs, our proposed Scene Language generates complex scenes with higher fidelity, while explicitly modeling the scene structures to enable precise control and editing.
Related papers
- SceneScript: Reconstructing Scenes With An Autoregressive Structured Language Model [7.707324214953882]
We introduce SceneScript, a method that produces full scene models as a sequence of structured language commands.
Our method infers the set of structured language commands directly from encoded visual data.
Our method gives state-of-the art results in architectural layout estimation, and competitive results in 3D object detection.
arXiv Detail & Related papers (2024-03-19T18:01:29Z) - InstructScene: Instruction-Driven 3D Indoor Scene Synthesis with
Semantic Graph Prior [27.773451301040424]
InstructScene is a novel generative framework that integrates a semantic graph prior and a layout decoder.
We show that the proposed method surpasses existing state-of-the-art approaches by a large margin.
arXiv Detail & Related papers (2024-02-07T10:09:00Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - GraphDreamer: Compositional 3D Scene Synthesis from Scene Graphs [74.98581417902201]
We propose a novel framework to generate compositional 3D scenes from scene graphs.
By exploiting node and edge information in scene graphs, our method makes better use of the pretrained text-to-image diffusion model.
We conduct both qualitative and quantitative experiments to validate the effectiveness of GraphDreamer.
arXiv Detail & Related papers (2023-11-30T18:59:58Z) - CommonScenes: Generating Commonsense 3D Indoor Scenes with Scene Graph
Diffusion [83.30168660888913]
We present CommonScenes, a fully generative model that converts scene graphs into corresponding controllable 3D scenes.
Our pipeline consists of two branches, one predicting the overall scene layout via a variational auto-encoder and the other generating compatible shapes.
The generated scenes can be manipulated by editing the input scene graph and sampling the noise in the diffusion model.
arXiv Detail & Related papers (2023-05-25T17:39:13Z) - Understanding Cross-modal Interactions in V&L Models that Generate Scene
Descriptions [3.7957452405531256]
This paper explores the potential of a state-of-the-art Vision and Language model, VinVL, to caption images at the scene level.
We show (3) that a small amount of curated data suffices to generate scene descriptions without losing the capability to identify object-level concepts in the scene.
We discuss the parallels between these results and insights from computational and cognitive science research on scene perception.
arXiv Detail & Related papers (2022-11-09T15:33:51Z) - Neural Groundplans: Persistent Neural Scene Representations from a
Single Image [90.04272671464238]
We present a method to map 2D image observations of a scene to a persistent 3D scene representation.
We propose conditional neural groundplans as persistent and memory-efficient scene representations.
arXiv Detail & Related papers (2022-07-22T17:41:24Z) - Control-NeRF: Editable Feature Volumes for Scene Rendering and
Manipulation [58.16911861917018]
We present a novel method for performing flexible, 3D-aware image content manipulation while enabling high-quality novel view synthesis.
Our model couples learnt scene-specific feature volumes with a scene agnostic neural rendering network.
We demonstrate various scene manipulations, including mixing scenes, deforming objects and inserting objects into scenes, while still producing photo-realistic results.
arXiv Detail & Related papers (2022-04-22T17:57:00Z) - Neural Scene Graphs for Dynamic Scenes [57.65413768984925]
We present the first neural rendering method that decomposes dynamic scenes into scene graphs.
We learn implicitly encoded scenes, combined with a jointly learned latent representation to describe objects with a single implicit function.
arXiv Detail & Related papers (2020-11-20T12:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.