Fast Graph Sharpness-Aware Minimization for Enhancing and Accelerating Few-Shot Node Classification
- URL: http://arxiv.org/abs/2410.16845v1
- Date: Tue, 22 Oct 2024 09:33:29 GMT
- Title: Fast Graph Sharpness-Aware Minimization for Enhancing and Accelerating Few-Shot Node Classification
- Authors: Yihong Luo, Yuhan Chen, Siya Qiu, Yiwei Wang, Chen Zhang, Yan Zhou, Xiaochun Cao, Jing Tang,
- Abstract summary: Graph Neural Networks (GNNs) have shown superior performance in node classification.
We present Fast Graph Sharpness-Aware Minimization (FGSAM) that integrates the rapid training of Multi-Layer Perceptrons with the superior performance of GNNs.
Our proposed algorithm outperforms the standard SAM with lower computational costs in FSNC tasks.
- Score: 53.727688136434345
- License:
- Abstract: Graph Neural Networks (GNNs) have shown superior performance in node classification. However, GNNs perform poorly in the Few-Shot Node Classification (FSNC) task that requires robust generalization to make accurate predictions for unseen classes with limited labels. To tackle the challenge, we propose the integration of Sharpness-Aware Minimization (SAM)--a technique designed to enhance model generalization by finding a flat minimum of the loss landscape--into GNN training. The standard SAM approach, however, consists of two forward-backward steps in each training iteration, doubling the computational cost compared to the base optimizer (e.g., Adam). To mitigate this drawback, we introduce a novel algorithm, Fast Graph Sharpness-Aware Minimization (FGSAM), that integrates the rapid training of Multi-Layer Perceptrons (MLPs) with the superior performance of GNNs. Specifically, we utilize GNNs for parameter perturbation while employing MLPs to minimize the perturbed loss so that we can find a flat minimum with good generalization more efficiently. Moreover, our method reutilizes the gradient from the perturbation phase to incorporate graph topology into the minimization process at almost zero additional cost. To further enhance training efficiency, we develop FGSAM+ that executes exact perturbations periodically. Extensive experiments demonstrate that our proposed algorithm outperforms the standard SAM with lower computational costs in FSNC tasks. In particular, our FGSAM+ as a SAM variant offers a faster optimization than the base optimizer in most cases. In addition to FSNC, our proposed methods also demonstrate competitive performance in the standard node classification task for heterophilic graphs, highlighting the broad applicability. The code is available at https://github.com/draym28/FGSAM_NeurIPS24.
Related papers
- Enhancing GNNs Performance on Combinatorial Optimization by Recurrent Feature Update [0.09986418756990156]
We introduce a novel algorithm, denoted hereafter as QRF-GNN, leveraging the power of GNNs to efficiently solve Combinatorial optimization (CO) problems.
It relies on unsupervised learning by minimizing the loss function derived from QUBO relaxation.
Results of experiments show that QRF-GNN drastically surpasses existing learning-based approaches and is comparable to the state-of-the-art conventionals.
arXiv Detail & Related papers (2024-07-23T13:34:35Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Sharpness-Aware Graph Collaborative Filtering [31.133543641102914]
Graph Neural Networks (GNNs) have achieved impressive performance in collaborative training.
GNNs tend to yield inferior performance when the distributions of and test data are not aligned well.
We propose an effective training schema, called gSAM, under the principle that the textitflatter minima has a better filtering ability than the SAMitsharper ones.
arXiv Detail & Related papers (2023-07-18T01:02:20Z) - Efficient Generalization Improvement Guided by Random Weight
Perturbation [24.027159739234524]
Gruesome-aware minimization (SAM) establishes a generic scheme for generalization improvements.
We resort to filter-wise random weight perturbations (RWP) to decouple the nested gradients in SAM.
We achieve very competitive performance on CIFAR and remarkably better performance on ImageNet.
arXiv Detail & Related papers (2022-11-21T14:24:34Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Sharpness-Aware Training for Free [163.1248341911413]
SharpnessAware Minimization (SAM) has shown that minimizing a sharpness measure, which reflects the geometry of the loss landscape, can significantly reduce the generalization error.
Sharpness-Aware Training Free (SAF) mitigates the sharp landscape at almost zero computational cost over the base.
SAF ensures the convergence to a flat minimum with improved capabilities.
arXiv Detail & Related papers (2022-05-27T16:32:43Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
This paper proposes Efficient Sharpness Aware Minimizer (M) which boosts SAM s efficiency at no cost to its generalization performance.
M includes two novel and efficient training strategies-StochasticWeight Perturbation and Sharpness-Sensitive Data Selection.
We show, via extensive experiments on the CIFAR and ImageNet datasets, that ESAM enhances the efficiency over SAM from requiring 100% extra computations to 40% vis-a-vis bases.
arXiv Detail & Related papers (2021-10-07T02:20:37Z) - Sharpness-Aware Minimization for Efficiently Improving Generalization [36.87818971067698]
We introduce a novel, effective procedure for simultaneously minimizing loss value and loss sharpness.
Sharpness-Aware Minimization (SAM) seeks parameters that lie in neighborhoods having uniformly low loss.
We present empirical results showing that SAM improves model generalization across a variety of benchmark datasets.
arXiv Detail & Related papers (2020-10-03T19:02:10Z) - Gradient Centralization: A New Optimization Technique for Deep Neural
Networks [74.935141515523]
gradient centralization (GC) operates directly on gradients by centralizing the gradient vectors to have zero mean.
GC can be viewed as a projected gradient descent method with a constrained loss function.
GC is very simple to implement and can be easily embedded into existing gradient based DNNs with only one line of code.
arXiv Detail & Related papers (2020-04-03T10:25:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.