IdenBAT: Disentangled Representation Learning for Identity-Preserved Brain Age Transformation
- URL: http://arxiv.org/abs/2410.16945v1
- Date: Tue, 22 Oct 2024 12:20:15 GMT
- Title: IdenBAT: Disentangled Representation Learning for Identity-Preserved Brain Age Transformation
- Authors: Junyeong Maeng, Kwanseok Oh, Wonsik Jung, Heung-Il Suk,
- Abstract summary: Brain age transformation aims to convert reference brain images into synthesized images that accurately reflect the age-specific features of a target age group.
We propose a novel architecture that employs disentangled representation learning for identity-preserved brain age transformation called IdenBAT.
Our method adeptly converts input images to target age while retaining individual characteristics accurately.
- Score: 9.23090816270662
- License:
- Abstract: Brain age transformation aims to convert reference brain images into synthesized images that accurately reflect the age-specific features of a target age group. The primary objective of this task is to modify only the age-related attributes of the reference image while preserving all other age-irrelevant attributes. However, achieving this goal poses substantial challenges due to the inherent entanglement of various image attributes within features extracted from a backbone encoder, resulting in simultaneous alterations during the image generation. To address this challenge, we propose a novel architecture that employs disentangled representation learning for identity-preserved brain age transformation called IdenBAT. This approach facilitates the decomposition of image features, ensuring the preservation of individual traits while selectively transforming age-related characteristics to match those of the target age group. Through comprehensive experiments conducted on both 2D and full-size 3D brain datasets, our method adeptly converts input images to target age while retaining individual characteristics accurately. Furthermore, our approach demonstrates superiority over existing state-of-the-art regarding performance fidelity.
Related papers
- Diverse and Lifespan Facial Age Transformation Synthesis with Identity Variation Rationality Metric [12.438204529412706]
We introduce $rmDLATboldsymbol+$ to realize Diverse and Lifespan Age Transformation on human faces.
Apart from the diversity mechanism embedded in the model, multiple consistency restrictions are leveraged to keep it away from counterfactual aging syntheses.
arXiv Detail & Related papers (2024-01-25T09:26:08Z) - Age Prediction From Face Images Via Contrastive Learning [1.7705784090599048]
We leverage readily available face datasets of different people at different ages and aim to extract age-related features using contrastive learning.
Our method emphasizes relevant features while suppressing identity-related features using a combination of cosine similarity and triplet margin losses.
arXiv Detail & Related papers (2023-08-23T03:43:34Z) - Deep Collaborative Multi-Modal Learning for Unsupervised Kinship
Estimation [53.62256887837659]
Kinship verification is a long-standing research challenge in computer vision.
We propose a novel deep collaborative multi-modal learning (DCML) to integrate the underlying information presented in facial properties.
Our DCML method is always superior to some state-of-the-art kinship verification methods.
arXiv Detail & Related papers (2021-09-07T01:34:51Z) - Disentangled Lifespan Face Synthesis [100.29058545878341]
A lifespan face synthesis (LFS) model aims to generate a set of photo-realistic face images of a person's whole life, given only one snapshot as reference.
The generated face image given a target age code is expected to be age-sensitive reflected by bio-plausible transformations of shape and texture.
This is achieved by extracting shape, texture and identity features separately from an encoder.
arXiv Detail & Related papers (2021-08-05T22:33:14Z) - FP-Age: Leveraging Face Parsing Attention for Facial Age Estimation in
the Wild [50.8865921538953]
We propose a method to explicitly incorporate facial semantics into age estimation.
We design a face parsing-based network to learn semantic information at different scales.
We show that our method consistently outperforms all existing age estimation methods.
arXiv Detail & Related papers (2021-06-21T14:31:32Z) - Continuous Face Aging Generative Adversarial Networks [11.75204350455584]
Face aging is the task aiming to translate the faces in input images to designated ages.
Previous methods have limited themselves only able to produce discrete age groups, each of which consists of ten years.
We propose the continuous face aging generative adversarial networks (CFA-GAN)
arXiv Detail & Related papers (2021-02-26T06:22:25Z) - Only a Matter of Style: Age Transformation Using a Style-Based
Regression Model [46.48263482909809]
We present an image-to-image translation method that learns to encode real facial images into the latent space of a pre-trained unconditional GAN.
We employ a pre-trained age regression network used to explicitly guide the encoder in generating the latent codes corresponding to the desired age.
arXiv Detail & Related papers (2021-02-04T17:33:28Z) - Age Gap Reducer-GAN for Recognizing Age-Separated Faces [72.26969872180841]
We propose a novel algorithm for matching faces with temporal variations caused due to age progression.
The proposed generative adversarial network algorithm is a unified framework that combines facial age estimation and age-separated face verification.
arXiv Detail & Related papers (2020-11-11T16:43:32Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
We aim at transforming an image with a fine-grained category to synthesize new images that preserve the identity of the input image.
We adopt a model based on generative adversarial networks to disentangle the identity related and unrelated factors of an image.
Experiments on the CompCars and Multi-PIE datasets demonstrate that our model preserves the identity of the generated images much better than the state-of-the-art image-to-image transformation models.
arXiv Detail & Related papers (2020-01-12T05:26:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.