Combinatorial Logistic Bandits
- URL: http://arxiv.org/abs/2410.17075v2
- Date: Tue, 19 Nov 2024 15:50:58 GMT
- Title: Combinatorial Logistic Bandits
- Authors: Xutong Liu, Xiangxiang Dai, Xuchuang Wang, Mohammad Hajiesmaili, John C. S. Lui,
- Abstract summary: We introduce a novel framework called logistic bandits (CLogB)
In each round, a subset of base arms (called the super arm) is selected, with the outcome of each base arm being binary.
Experiments on real-world datasets demonstrate the superior performance of our algorithms compared to benchmark algorithms.
- Score: 30.829239785016934
- License:
- Abstract: We introduce a novel framework called combinatorial logistic bandits (CLogB), where in each round, a subset of base arms (called the super arm) is selected, with the outcome of each base arm being binary and its expectation following a logistic parametric model. The feedback is governed by a general arm triggering process. Our study covers CLogB with reward functions satisfying two smoothness conditions, capturing application scenarios such as online content delivery, online learning to rank, and dynamic channel allocation. We first propose a simple yet efficient algorithm, CLogUCB, utilizing a variance-agnostic exploration bonus. Under the 1-norm triggering probability modulated (TPM) smoothness condition, CLogUCB achieves a regret bound of $\tilde{O}(d\sqrt{\kappa KT})$, where $\tilde{O}$ ignores logarithmic factors, $d$ is the dimension of the feature vector, $\kappa$ represents the nonlinearity of the logistic model, and $K$ is the maximum number of base arms a super arm can trigger. This result improves on prior work by a factor of $\tilde{O}(\sqrt{\kappa})$. We then enhance CLogUCB with a variance-adaptive version, VA-CLogUCB, which attains a regret bound of $\tilde{O}(d\sqrt{KT})$ under the same 1-norm TPM condition, improving another $\tilde{O}(\sqrt{\kappa})$ factor. VA-CLogUCB shows even greater promise under the stronger triggering probability and variance modulated (TPVM) condition, achieving a leading $\tilde{O}(d\sqrt{T})$ regret, thus removing the additional dependency on the action-size $K$. Furthermore, we enhance the computational efficiency of VA-CLogUCB by eliminating the nonconvex optimization process when the context feature map is time-invariant while maintaining the tight $\tilde{O}(d\sqrt{T})$ regret. Finally, experiments on synthetic and real-world datasets demonstrate the superior performance of our algorithms compared to benchmark algorithms.
Related papers
- Federated Linear Bandits with Finite Adversarial Actions [20.1041278044797]
We study a federated linear bandits model, where $M$ clients communicate with a central server to solve a linear contextual bandits problem.
To address the unique challenges of adversarial finite action sets, we propose the FedSupLinUCB algorithm.
We prove that FedSupLinUCB achieves a total regret of $tildeO(sqrtd T)$, where $T$ is the total number of arm pulls from all clients, and $d$ is the ambient dimension of the linear model.
arXiv Detail & Related papers (2023-11-02T03:41:58Z) - Sharper Model-free Reinforcement Learning for Average-reward Markov
Decision Processes [21.77276136591518]
We develop provably efficient model-free reinforcement learning (RL) algorithms for Markov Decision Processes (MDPs)
In the simulator setting, we propose a model-free RL algorithm that finds an $epsilon$-optimal policy using $widetildeO left(fracSAmathrmsp(h*)epsilon2+fracS2Amathrmsp(h*)epsilon2right)$ samples.
arXiv Detail & Related papers (2023-06-28T17:43:19Z) - Contextual Combinatorial Bandits with Probabilistically Triggered Arms [55.9237004478033]
We study contextual bandits with probabilistically triggered arms (C$2$MAB-T) under a variety of smoothness conditions.
Under the triggering modulated (TPM) condition, we devise the C$2$-UC-T algorithm and derive a regret bound $tildeO(dsqrtT)$.
arXiv Detail & Related papers (2023-03-30T02:51:00Z) - Horizon-Free and Variance-Dependent Reinforcement Learning for Latent
Markov Decision Processes [62.90204655228324]
We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight.
We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver.
arXiv Detail & Related papers (2022-10-20T21:32:01Z) - Near-Optimal Regret Bounds for Multi-batch Reinforcement Learning [54.806166861456035]
We study the episodic reinforcement learning (RL) problem modeled by finite-horizon Markov Decision Processes (MDPs) with constraint on the number of batches.
We design a computational efficient algorithm to achieve near-optimal regret of $tildeO(sqrtSAH3Kln (1/delta))$tildeO(cdot) hides logarithmic terms of $(S,A,H,K)$ in $K$ episodes.
Our technical contribution are two-fold: 1) a near-optimal design scheme to explore
arXiv Detail & Related papers (2022-10-15T09:22:22Z) - Batch-Size Independent Regret Bounds for Combinatorial Semi-Bandits with Probabilistically Triggered Arms or Independent Arms [59.8188496313214]
We study the semi-bandits (CMAB) and focus on reducing the dependency of the batch-size $K$ in the regret bound.
First, for the setting of CMAB with probabilistically triggered arms (CMAB-T), we propose a BCUCB-T algorithm with variance-aware confidence intervals.
Second, for the setting of non-triggering CMAB with independent arms, we propose a SESCB algorithm which leverages on the non-triggering version of the TPVM condition.
arXiv Detail & Related papers (2022-08-31T13:09:39Z) - Contextual Combinatorial Volatile Bandits via Gaussian Processes [10.312968200748116]
We consider a contextual bandit problem with a set of available base arms and their contexts.
We propose an algorithm called Optimistic Combinatorial Learning and Optimization with Kernel Upper Confidence Bounds (O'CLOK-UCB)
We experimentally show that both algorithms vastly outperform the previous state-of-the-art UCB-based algorithms in realistic setups.
arXiv Detail & Related papers (2021-10-05T18:02:10Z) - Near-Optimal Regret Bounds for Contextual Combinatorial Semi-Bandits
with Linear Payoff Functions [53.77572276969548]
We show that the C$2$UCB algorithm has the optimal regret bound $tildeO(dsqrtkT + dk)$ for the partition matroid constraints.
For general constraints, we propose an algorithm that modifies the reward estimates of arms in the C$2$UCB algorithm.
arXiv Detail & Related papers (2021-01-20T04:29:18Z) - Provably Efficient Reinforcement Learning with Linear Function
Approximation Under Adaptivity Constraints [94.76881135901753]
We consider two popular limited adaptivity models: batch learning model and rare policy switch model.
Our proposed LSVI-UCB-Batch algorithm achieves an $tilde O(sqrtd3H3T + dHT/B)$ regret.
For the rare policy switch model, our proposed LSVI-UCB-RareSwitch algorithm enjoys an $tilde O(sqrtd3H3T[1+T/(dH)]dH/B)$ regret.
arXiv Detail & Related papers (2021-01-06T18:56:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.