Radio Map Prediction from Aerial Images and Application to Coverage Optimization
- URL: http://arxiv.org/abs/2410.17264v1
- Date: Mon, 07 Oct 2024 09:19:20 GMT
- Title: Radio Map Prediction from Aerial Images and Application to Coverage Optimization
- Authors: Fabian Jaensch, Giuseppe Caire, Begüm Demir,
- Abstract summary: We focus on predicting path loss radio maps using convolutional neural networks.
We show that state-of-the-art models developed for existing radio map datasets can be effectively adapted to this task.
We introduce a new model that slightly exceeds the performance of the present state-of-the-art with reduced complexity.
- Score: 46.870065000932016
- License:
- Abstract: In recent years, several studies have explored deep learning algorithms to predict large-scale signal fading, or path loss, in urban communication networks. The goal is to replace costly measurement campaigns, inaccurate statistical models, or computationally expensive ray-tracing simulations with machine learning models that deliver quick and accurate predictions. We focus on predicting path loss radio maps using convolutional neural networks, leveraging aerial images alone or in combination with supplementary height information. Notably, our approach does not rely on explicit classification of environmental objects, which is often unavailable for most locations worldwide. While the prediction of radio maps using complete 3D environmental data is well-studied, the use of only aerial images remains under-explored. We address this gap by showing that state-of-the-art models developed for existing radio map datasets can be effectively adapted to this task, achieving strong performance. Additionally, we introduce a new model that slightly exceeds the performance of the present state-of-the-art with reduced complexity. The trained models are differentiable, and therefore they can be incorporated in various network optimization algorithms. While an extensive discussion is beyond this paper's scope, we demonstrate this through an example optimizing the directivity of base stations in cellular networks via backpropagation to enhance coverage.
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
We release a dataset of simulated path loss radio maps together with realistic city maps from real-world locations and aerial images from open datasources.
Initial experiments regarding model architectures, input feature design and estimation of radio maps from aerial images are presented.
arXiv Detail & Related papers (2024-01-12T14:56:45Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
We propose a Machine Learning-based model that leverages novel key predictors for estimating pathloss.
By quantitatively evaluating the ability of various ML algorithms in terms of predictive, generalization and computational performance, our results show that Light Gradient Boosting Machine (LightGBM) algorithm overall outperforms others.
arXiv Detail & Related papers (2022-01-30T19:50:16Z) - Toward Data-Driven STAP Radar [23.333816677794115]
We characterize our data-driven approach to space-time adaptive processing (STAP) radar.
We generate a rich example dataset of received radar signals by randomly placing targets of variable strengths in a predetermined region.
For each data sample within this region, we generate heatmap tensors in range, azimuth, and elevation of the output power of a beamformer.
In an airborne scenario, the moving radar creates a sequence of these time-indexed image stacks, resembling a video.
arXiv Detail & Related papers (2022-01-26T02:28:13Z) - Cellular Network Radio Propagation Modeling with Deep Convolutional
Neural Networks [7.890819981813062]
We present a novel method to model radio propagation using deep convolutional neural networks.
We also lay down the framework for data-driven modeling of radio propagation.
arXiv Detail & Related papers (2021-10-05T07:20:48Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - Exploiting latent representation of sparse semantic layers for improved
short-term motion prediction with Capsule Networks [0.12183405753834559]
This paper explores use of Capsule Networks (CapsNets) in the context of learning a hierarchical representation of sparse semantic layers corresponding to small regions of the High-Definition (HD) map.
By using an architecture based on CapsNets the model is able to retain hierarchical relationships between detected features within images whilst also preventing loss of spatial data often caused by the pooling operation.
We show that our model achieves significant improvement over recently published works on prediction, whilst drastically reducing the overall size of the network.
arXiv Detail & Related papers (2021-03-02T11:13:43Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.