Computing Optimal Regularizers for Online Linear Optimization
- URL: http://arxiv.org/abs/2410.17336v1
- Date: Tue, 22 Oct 2024 18:10:50 GMT
- Title: Computing Optimal Regularizers for Online Linear Optimization
- Authors: Khashayar Gatmiry, Jon Schneider, Stefanie Jegelka,
- Abstract summary: Follow-the-Regularized-Leader (FTRL) algorithms are a popular class of learning algorithms for online linear optimization (OLO)
We show that there exists an instantiation of FTRL which achieves regret within a constant factor of the best possible learning algorithm.
- Score: 38.72709491927979
- License:
- Abstract: Follow-the-Regularized-Leader (FTRL) algorithms are a popular class of learning algorithms for online linear optimization (OLO) that guarantee sub-linear regret, but the choice of regularizer can significantly impact dimension-dependent factors in the regret bound. We present an algorithm that takes as input convex and symmetric action sets and loss sets for a specific OLO instance, and outputs a regularizer such that running FTRL with this regularizer guarantees regret within a universal constant factor of the best possible regret bound. In particular, for any choice of (convex, symmetric) action set and loss set we prove that there exists an instantiation of FTRL which achieves regret within a constant factor of the best possible learning algorithm, strengthening the universality result of Srebro et al., 2011. Our algorithm requires preprocessing time and space exponential in the dimension $d$ of the OLO instance, but can be run efficiently online assuming a membership and linear optimization oracle for the action and loss sets, respectively (and is fully polynomial time for the case of constant dimension $d$). We complement this with a lower bound showing that even deciding whether a given regularizer is $\alpha$-strongly-convex with respect to a given norm is NP-hard.
Related papers
- Optimism in the Face of Ambiguity Principle for Multi-Armed Bandits [6.7310264583128445]
Follow-The-Regularized-Leader (FTRL) algorithms often enjoy optimal regret for adversarial as well as bandit problems.
We propose a new FTPL algorithm that generates optimal policies for both adversarial and multi-armed bandits.
arXiv Detail & Related papers (2024-09-30T16:00:23Z) - Sparsity-Constraint Optimization via Splicing Iteration [1.3622424109977902]
We develop an algorithm named Sparsity-Constraint Optimization via sPlicing itEration (SCOPE)
SCOPE converges effectively without tuning parameters.
We apply SCOPE to solve quadratic optimization, learn sparse classifiers, and recover sparse Markov networks for binary variables.
Our open-source Python package skscope based on C++ implementation is publicly available on GitHub.
arXiv Detail & Related papers (2024-06-17T18:34:51Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Stability-penalty-adaptive follow-the-regularized-leader: Sparsity,
game-dependency, and best-of-both-worlds [46.30750729936261]
Follow-the-regularized-leader (FTRL) has recently emerged as one of the most promising approaches for obtaining various types of adaptivity in bandit problems.
We establish several algorithms with three types of adaptivity: sparsity, game-dependency, and best-of-both-worlds (BOBW)
arXiv Detail & Related papers (2023-05-26T23:20:48Z) - Improved Best-of-Both-Worlds Guarantees for Multi-Armed Bandits: FTRL
with General Regularizers and Multiple Optimal Arms [41.06668954462585]
We study the problem of designing adaptive multi-armed bandit algorithms that optimally perform in both the setting and the adversarial setting simultaneously.
We show that uniqueness is unnecessary for FTRL with a broad family of regularizers and a new learning rate schedule.
arXiv Detail & Related papers (2023-02-27T06:09:10Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
We propose variance regularization for offline RL algorithms, using stationary distribution corrections.
We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer.
The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms.
arXiv Detail & Related papers (2022-12-29T18:25:01Z) - Safe Online Bid Optimization with Return-On-Investment and Budget
Constraints subject to Uncertainty [87.81197574939355]
We study the nature of both the optimization and learning problems.
We provide an algorithm, namely GCB, guaranteeing sublinear regret at the cost of a potentially linear number of constraints violations.
More interestingly, we provide an algorithm, namely GCB_safe(psi,phi), guaranteeing both sublinear pseudo-regret and safety w.h.p. at the cost of accepting tolerances psi and phi.
arXiv Detail & Related papers (2022-01-18T17:24:20Z) - Screening for Sparse Online Learning [11.523471275501855]
Sparsity promoting regularizers are widely used to impose low-complexity structure (e.g. l1-norm for sparsity) to the regression coefficients of supervised learning.
Most online algorithms do not have the property owing to the vanishing step-size and non-vanishing variance.
We show how to eliminate useless features of the iterates generated by online algorithms, and thereby enforce finite activity identification.
arXiv Detail & Related papers (2021-01-18T10:40:47Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.