Captions Speak Louder than Images (CASLIE): Generalizing Foundation Models for E-commerce from High-quality Multimodal Instruction Data
- URL: http://arxiv.org/abs/2410.17337v1
- Date: Tue, 22 Oct 2024 18:11:43 GMT
- Title: Captions Speak Louder than Images (CASLIE): Generalizing Foundation Models for E-commerce from High-quality Multimodal Instruction Data
- Authors: Xinyi Ling, Bo Peng, Hanwen Du, Zhihui Zhu, Xia Ning,
- Abstract summary: We introduce MMECInstruct, the first-ever, large-scale, and high-quality multimodal instruction dataset for e-commerce.
We also develop CASLIE, a simple, lightweight, yet effective framework for integrating multimodal information for e-commerce.
- Score: 19.191477918391726
- License:
- Abstract: Leveraging multimodal data to drive breakthroughs in e-commerce applications through Multimodal Foundation Models (MFMs) is gaining increasing attention from the research community. However, there are significant challenges that hinder the optimal use of multimodal e-commerce data by foundation models: (1) the scarcity of large-scale, high-quality multimodal benchmark datasets; and (2) the lack of effective multimodal information integration methods. To address these challenges, in this paper, we introduce MMECInstruct, the first-ever, large-scale, and high-quality multimodal instruction dataset for e-commerce. We also develop CASLIE, a simple, lightweight, yet effective framework for integrating multimodal information for e-commerce. Leveraging MMECInstruct, we fine-tune a series of e-commerce MFMs within CASLIE, denoted as CASLIE models. Our comprehensive evaluation demonstrates that CASLIE models substantially outperform 5 categories of advanced baseline models in the in-domain evaluation. Moreover, CASLIE models show strong generalizability to out-of-domain settings. MMECInstruct and CASLIE models are publicly accessible through https://ninglab.github.io/CASLIE/.
Related papers
- QARM: Quantitative Alignment Multi-Modal Recommendation at Kuaishou [23.818456863262494]
We introduce a quantitative multi-modal framework to customize the specialized and trainable multi-modal information for different downstream models.
Inspired by the two difficulties challenges in downstream tasks usage, we introduce a quantitative multi-modal framework to customize the specialized and trainable multi-modal information for different downstream models.
arXiv Detail & Related papers (2024-11-18T17:08:35Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a novel sandbox suite tailored for integrated data-model co-development.
This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models.
We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding light on the critical interplay between data quality, diversity, and model behavior.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data [12.895762133464103]
We construct ECInstruct, the first open-sourced, large-scale, and high-quality benchmark instruction dataset for e-commerce.
We develop eCeLLM, a series of e-commerce LLMs, by instruction-tuning general-purpose LLMs.
eCeLLM exhibits excellent generalizability to out-of-domain settings, including unseen products and unseen instructions.
arXiv Detail & Related papers (2024-02-13T22:26:24Z) - CaMML: Context-Aware Multimodal Learner for Large Models [16.30752006781618]
We introduce Context-Aware MultiModal Learner (CaMML) for tuning large multimodal models (LMMs)
CaMML is crafted to seamlessly integrate multimodal contextual samples into large models, empowering the model to derive knowledge from analogous, domain-specific, up-to-date information.
Based on CaMML, we have developed two multimodal models, CaMML-7B and CaMML-13B, that have shown exceptional performance across an array of benchmark datasets for multimodal tasks.
arXiv Detail & Related papers (2024-01-06T07:54:58Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
This paper investigates how to better leverage large-scale pre-trained uni-modal models to enhance discriminative multi-modal learning.
We introduce Multi-Modal Low-Rank Adaptation learning (MMLoRA)
arXiv Detail & Related papers (2023-10-08T15:01:54Z) - Benchmarking Diverse-Modal Entity Linking with Generative Models [78.93737257356784]
We construct a benchmark for diverse-modal EL (DMEL) from existing EL datasets.
To approach the DMEL task, we proposed a generative diverse-modal model (GDMM) following a multimodal-encoder-decoder paradigm.
GDMM builds a stronger DMEL baseline, outperforming state-of-the-art task-specific EL models by 8.51 F1 score on average.
arXiv Detail & Related papers (2023-05-27T02:38:46Z) - Learning Instance-Level Representation for Large-Scale Multi-Modal
Pretraining in E-commerce [35.73830796500975]
We propose an instance-centric multi-modal pretraining paradigm called ECLIP in this work.
To enable the model to focus on the desired product instance without reliance on expensive manual annotations, two specially configured pretext tasks are proposed.
ECLIP surpasses existing methods by a large margin on a broad range of downstream tasks, demonstrating the strong transferability to real-world E-commerce applications.
arXiv Detail & Related papers (2023-04-06T04:14:41Z) - M5Product: A Multi-modal Pretraining Benchmark for E-commercial Product
Downstream Tasks [94.80043324367858]
We contribute a large-scale dataset, named M5Product, which consists of over 6 million multimodal pairs.
M5Product contains rich information of multiple modalities including image, text, table, video and audio.
arXiv Detail & Related papers (2021-09-09T13:50:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.