packetLSTM: Dynamic LSTM Framework for Streaming Data with Varying Feature Space
- URL: http://arxiv.org/abs/2410.17394v1
- Date: Tue, 22 Oct 2024 20:01:39 GMT
- Title: packetLSTM: Dynamic LSTM Framework for Streaming Data with Varying Feature Space
- Authors: Rohit Agarwal, Karaka Prasanth Naidu, Alexander Horsch, Krishna Agarwal, Dilip K. Prasad,
- Abstract summary: We study the online learning problem characterized by the varying input feature space of streaming data.
We propose a dynamic LSTM-based novel method, called packetLSTM, to model the dimension-varying streams.
packetLSTM achieves state-of-the-art results on five datasets, and its underlying principle is extended to other RNN types, like GRU and vanilla RNN.
- Score: 44.62845936150961
- License:
- Abstract: We study the online learning problem characterized by the varying input feature space of streaming data. Although LSTMs have been employed to effectively capture the temporal nature of streaming data, they cannot handle the dimension-varying streams in an online learning setting. Therefore, we propose a dynamic LSTM-based novel method, called packetLSTM, to model the dimension-varying streams. The packetLSTM's dynamic framework consists of an evolving packet of LSTMs, each dedicated to processing one input feature. Each LSTM retains the local information of its corresponding feature, while a shared common memory consolidates global information. This configuration facilitates continuous learning and mitigates the issue of forgetting, even when certain features are absent for extended time periods. The idea of utilizing one LSTM per feature coupled with a dimension-invariant operator for information aggregation enhances the dynamic nature of packetLSTM. This dynamic nature is evidenced by the model's ability to activate, deactivate, and add new LSTMs as required, thus seamlessly accommodating varying input dimensions. The packetLSTM achieves state-of-the-art results on five datasets, and its underlying principle is extended to other RNN types, like GRU and vanilla RNN.
Related papers
- xLSTM: Extended Long Short-Term Memory [26.607656211983155]
In the 1990s, constant error carousel and gating were introduced as the central ideas of the Long Short-Term Memory (LSTM)
We introduce exponential gating with appropriate normalization and stabilization techniques.
We modify the LSTM memory structure, obtaining: (i) sLSTM with a scalar memory, a scalar update, and new memory mixing, (ii) mLSTM that is fully parallelizable with a matrix memory and a covariance update rule.
arXiv Detail & Related papers (2024-05-07T17:50:21Z) - RigLSTM: Recurrent Independent Grid LSTM for Generalizable Sequence
Learning [75.61681328968714]
We propose recurrent independent Grid LSTM (RigLSTM) to exploit the underlying modular structure of the target task.
Our model adopts cell selection, input feature selection, hidden state selection, and soft state updating to achieve a better generalization ability.
arXiv Detail & Related papers (2023-11-03T07:40:06Z) - DeLELSTM: Decomposition-based Linear Explainable LSTM to Capture
Instantaneous and Long-term Effects in Time Series [26.378073712630467]
We propose a Decomposition-based Linear Explainable LSTM (DeLELSTM) to improve the interpretability of LSTM.
We demonstrate the effectiveness and interpretability of DeLELSTM on three empirical datasets.
arXiv Detail & Related papers (2023-08-26T07:45:41Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
We develop a adaptive, interpretable and scalable forecasting framework, which seeks to individually model each component of the spatial-temporal patterns.
SCNN works with a pre-defined generative process of MTS, which arithmetically characterizes the latent structure of the spatial-temporal patterns.
Extensive experiments are conducted to demonstrate that SCNN can achieve superior performance over state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2023-05-22T13:39:44Z) - Image Classification using Sequence of Pixels [3.04585143845864]
This study compares sequential image classification methods based on recurrent neural networks.
We describe methods based on Long-Short-Term memory(LSTM), bidirectional Long-Short-Term memory(BiLSTM) architectures, etc.
arXiv Detail & Related papers (2022-09-23T09:42:44Z) - Working Memory Connections for LSTM [51.742526187978726]
We show that Working Memory Connections constantly improve the performance of LSTMs on a variety of tasks.
Numerical results suggest that the cell state contains useful information that is worth including in the gate structure.
arXiv Detail & Related papers (2021-08-31T18:01:30Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Automatic Remaining Useful Life Estimation Framework with Embedded
Convolutional LSTM as the Backbone [5.927250637620123]
We propose a new LSTM variant called embedded convolutional LSTM (E NeuralTM)
In ETM a group of different 1D convolutions is embedded into the LSTM structure. Through this, the temporal information is preserved between and within windows.
We show the superiority of our proposed ETM approach over the state-of-the-art approaches on several widely used benchmark data sets for RUL Estimation.
arXiv Detail & Related papers (2020-08-10T08:34:20Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
Deep learning-based trackers based on LSTMs (Long Short-Term Memory) recurrent neural networks have emerged as a powerful alternative.
DenseLSTMs outperform Residual and regular LSTM, and offer a higher resilience to nuisances.
Our case study supports the adoption of residual-based RNNs for enhancing the robustness of other trackers.
arXiv Detail & Related papers (2020-06-22T08:20:17Z) - Sentiment Analysis Using Simplified Long Short-term Memory Recurrent
Neural Networks [1.5146765382501612]
We perform sentiment analysis on a GOP Debate Twitter dataset.
To speed up training and reduce the computational cost and time, six different parameter reduced slim versions of the LSTM model are proposed.
arXiv Detail & Related papers (2020-05-08T12:50:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.