Learning Fair and Preferable Allocations through Neural Network
- URL: http://arxiv.org/abs/2410.17500v1
- Date: Wed, 23 Oct 2024 01:47:55 GMT
- Title: Learning Fair and Preferable Allocations through Neural Network
- Authors: Ryota Maruo, Koh Takeuchi, Hisashi Kashima,
- Abstract summary: We aim to design mechanisms that strictly satisfy good properties with replicating expert knowledge.
Formal algorithms struggle to find preferable outcomes, and directly replicating these implicit rules can result in unfair allocations.
We develop a neural network that parameterizes RR and can be trained to learn the agent ordering used for RR.
- Score: 24.15688619889342
- License:
- Abstract: The fair allocation of indivisible resources is a fundamental problem. Existing research has developed various allocation mechanisms or algorithms to satisfy different fairness notions. For example, round robin (RR) was proposed to meet the fairness criterion known as envy-freeness up to one good (EF1). Expert algorithms without mathematical formulations are used in real-world resource allocation problems to find preferable outcomes for users. Therefore, we aim to design mechanisms that strictly satisfy good properties with replicating expert knowledge. However, this problem is challenging because such heuristic rules are often difficult to formalize mathematically, complicating their integration into theoretical frameworks. Additionally, formal algorithms struggle to find preferable outcomes, and directly replicating these implicit rules can result in unfair allocations because human decision-making can introduce biases. In this paper, we aim to learn implicit allocation mechanisms from examples while strictly satisfying fairness constraints, specifically focusing on learning EF1 allocation mechanisms through supervised learning on examples of reported valuations and corresponding allocation outcomes produced by implicit rules. To address this, we developed a neural RR (NRR), a novel neural network that parameterizes RR. NRR is built from a differentiable relaxation of RR and can be trained to learn the agent ordering used for RR. We conducted experiments to learn EF1 allocation mechanisms from examples, demonstrating that our method outperforms baselines in terms of the proximity of predicted allocations and other metrics.
Related papers
- A Practical Theory of Generalization in Selectivity Learning [8.268822578361824]
query-driven machine learning models have emerged as a promising estimation technique for query selectivities.
We bridge the gaps between state-of-the-art (SOTA) theory based on the Probably Approximately Correct (PAC) learning framework.
We show that selectivity predictors induced by signed measures are learnable, which relaxes the reliance on probability measures in SOTA theory.
arXiv Detail & Related papers (2024-09-11T05:10:32Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - FAIRM: Learning invariant representations for algorithmic fairness and domain generalization with minimax optimality [15.71499916304475]
We propose a training environment-based oracle, FAIRM, which has desirable fairness and domain generalization properties under a diversity-type condition.
We develop efficient algorithms to realize FAIRM in linear models and demonstrate the nonasymptotic performance with minimax optimality.
arXiv Detail & Related papers (2024-04-02T03:06:25Z) - f-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization [9.591164070876689]
This paper presents a unified optimization framework for fair empirical risk based on f-divergence measures (f-FERM)
In addition, our experiments demonstrate the superiority of fairness-accuracy tradeoffs offered by f-FERM for almost all batch sizes.
Our extension is based on a distributionally robust optimization reformulation of f-FERM objective under $L_p$ norms as uncertainty sets.
arXiv Detail & Related papers (2023-12-06T03:14:16Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
We discuss the key related theoretical aspects, with a particular focus on the fairness properties of primal optima and associated risk allocations.
The algorithms we provide allow for learning primals, optima for the dual representation and corresponding fair risk allocations.
arXiv Detail & Related papers (2023-02-02T22:16:49Z) - Less is More: Rethinking Few-Shot Learning and Recurrent Neural Nets [2.824895388993495]
We provide theoretical guarantees for reliable learning under the information-theoretic AEP.
We then focus on a highly efficient recurrent neural net (RNN) framework and propose a reduced-entropy algorithm for few-shot learning.
Our experimental results demonstrate significant potential for improving learning models' sample efficiency, generalization, and time complexity.
arXiv Detail & Related papers (2022-09-28T17:33:11Z) - Risk-Aware Linear Bandits: Theory and Applications in Smart Order
Routing [10.69955834942979]
We consider risk-aware bandits optimization with applications in smart order routing (SOR)
Driven by the variance-minimizing globally-optimal (G-optimal) design, we propose the novel instance-independent Risk-Aware Explore-then-Commit (RISE) algorithm and the instance-dependent Risk-Aware Successive Elimination (RISE++) algorithm.
arXiv Detail & Related papers (2022-08-04T00:21:10Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Forward Super-Resolution: How Can GANs Learn Hierarchical Generative
Models for Real-World Distributions [66.05472746340142]
Generative networks (GAN) are among the most successful for learning high-complexity, real-world distributions.
In this paper we show how GANs can efficiently learn to the distribution of real-life images.
arXiv Detail & Related papers (2021-06-04T17:33:29Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.