Primal-Dual Spectral Representation for Off-policy Evaluation
- URL: http://arxiv.org/abs/2410.17538v1
- Date: Wed, 23 Oct 2024 03:38:31 GMT
- Title: Primal-Dual Spectral Representation for Off-policy Evaluation
- Authors: Yang Hu, Tianyi Chen, Na Li, Kai Wang, Bo Dai,
- Abstract summary: Off-policy evaluation (OPE) is one of the most fundamental problems in reinforcement learning (RL)
We show that our algorithm, SpectralDICE, is both primal and sample efficient, the performance of which is supported by a rigorous theoretical sample complexity guarantee and a thorough empirical evaluation on various benchmarks.
- Score: 39.24759979398673
- License:
- Abstract: Off-policy evaluation (OPE) is one of the most fundamental problems in reinforcement learning (RL) to estimate the expected long-term payoff of a given target policy with only experiences from another behavior policy that is potentially unknown. The distribution correction estimation (DICE) family of estimators have advanced the state of the art in OPE by breaking the curse of horizon. However, the major bottleneck of applying DICE estimators lies in the difficulty of solving the saddle-point optimization involved, especially with neural network implementations. In this paper, we tackle this challenge by establishing a linear representation of value function and stationary distribution correction ratio, i.e., primal and dual variables in the DICE framework, using the spectral decomposition of the transition operator. Such primal-dual representation not only bypasses the non-convex non-concave optimization in vanilla DICE, therefore enabling an computational efficient algorithm, but also paves the way for more efficient utilization of historical data. We highlight that our algorithm, SpectralDICE, is the first to leverage the linear representation of primal-dual variables that is both computation and sample efficient, the performance of which is supported by a rigorous theoretical sample complexity guarantee and a thorough empirical evaluation on various benchmarks.
Related papers
- OptEx: Expediting First-Order Optimization with Approximately Parallelized Iterations [12.696136981847438]
We introduce first-order optimization expedited with approximately parallelized iterations (OptEx)
OptEx is the first framework that enhances the efficiency of FOO by leveraging parallel computing to mitigate its iterative bottleneck.
We provide theoretical guarantees for the reliability of our kernelized gradient estimation and the complexity of SGD-based OptEx.
arXiv Detail & Related papers (2024-02-18T02:19:02Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Variational Linearized Laplace Approximation for Bayesian Deep Learning [11.22428369342346]
We propose a new method for approximating Linearized Laplace Approximation (LLA) using a variational sparse Gaussian Process (GP)
Our method is based on the dual RKHS formulation of GPs and retains, as the predictive mean, the output of the original DNN.
It allows for efficient optimization, which results in sub-linear training time in the size of the training dataset.
arXiv Detail & Related papers (2023-02-24T10:32:30Z) - Proximal Point Imitation Learning [48.50107891696562]
We develop new algorithms with rigorous efficiency guarantees for infinite horizon imitation learning.
We leverage classical tools from optimization, in particular, the proximal-point method (PPM) and dual smoothing.
We achieve convincing empirical performance for both linear and neural network function approximation.
arXiv Detail & Related papers (2022-09-22T12:40:21Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - SoftDICE for Imitation Learning: Rethinking Off-policy Distribution
Matching [61.20581291619333]
SoftDICE achieves state-of-the-art performance for imitation learning.
We present SoftDICE, which achieves state-of-the-art performance for imitation learning.
arXiv Detail & Related papers (2021-06-06T15:37:11Z) - Off-Policy Evaluation via the Regularized Lagrangian [110.28927184857478]
Recently proposed distribution correction estimation (DICE) family of estimators has advanced the state of the art in off-policy evaluation from behavior-agnostic data.
In this paper, we unify these estimators as regularized Lagrangians of the same linear program.
We find that dual solutions offer greater flexibility in navigating the tradeoff between stability and estimation bias, and generally provide superior estimates in practice.
arXiv Detail & Related papers (2020-07-07T13:45:56Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.