PlantCamo: Plant Camouflage Detection
- URL: http://arxiv.org/abs/2410.17598v1
- Date: Wed, 23 Oct 2024 06:51:59 GMT
- Title: PlantCamo: Plant Camouflage Detection
- Authors: Jinyu Yang, Qingwei Wang, Feng Zheng, Peng Chen, Aleš Leonardis, Deng-Ping Fan,
- Abstract summary: This paper introduces a new challenging problem of Plant Camouflage Detection (PCD)
To address this problem, we introduce the PlantCamo dataset, which comprises 1,250 images with camouflaged plants.
We conduct a large-scale benchmark study using 20+ cutting-edge COD models on the proposed dataset.
Our PCNet surpasses performance thanks to its multi-scale global feature enhancement and refinement.
- Score: 60.685139083469956
- License:
- Abstract: Camouflaged Object Detection (COD) aims to detect objects with camouflaged properties. Although previous studies have focused on natural (animals and insects) and unnatural (artistic and synthetic) camouflage detection, plant camouflage has been neglected. However, plant camouflage plays a vital role in natural camouflage. Therefore, this paper introduces a new challenging problem of Plant Camouflage Detection (PCD). To address this problem, we introduce the PlantCamo dataset, which comprises 1,250 images with camouflaged plants representing 58 object categories in various natural scenes. To investigate the current status of plant camouflage detection, we conduct a large-scale benchmark study using 20+ cutting-edge COD models on the proposed dataset. Due to the unique characteristics of plant camouflage, including holes and irregular borders, we developed a new framework, named PCNet, dedicated to PCD. Our PCNet surpasses performance thanks to its multi-scale global feature enhancement and refinement. Finally, we discuss the potential applications and insights, hoping this work fills the gap in fine-grained COD research and facilitates further intelligent ecology research. All resources will be available on https://github.com/yjybuaa/PlantCamo.
Related papers
- The Making and Breaking of Camouflage [95.37449361842656]
We show that camouflage can be measured by the similarity between background and foreground features and boundary visibility.
We incorporate the proposed camouflage score into a generative model as an auxiliary loss and show that effective camouflage images or videos can be synthesised in a scalable manner.
arXiv Detail & Related papers (2023-09-07T17:58:05Z) - Camouflaged Image Synthesis Is All You Need to Boost Camouflaged
Detection [65.8867003376637]
We propose a framework for synthesizing camouflage data to enhance the detection of camouflaged objects in natural scenes.
Our approach employs a generative model to produce realistic camouflage images, which can be used to train existing object detection models.
Our framework outperforms the current state-of-the-art method on three datasets.
arXiv Detail & Related papers (2023-08-13T06:55:05Z) - Push Past Green: Learning to Look Behind Plant Foliage by Moving It [19.36396157137122]
Partial visibility, extreme clutter, thin structures, and unknown geometry and dynamics for plants make such manipulation challenging.
We use self-supervision to train SRPNet, a neural network that predicts what space is revealed on execution of a candidate action on a given plant.
As SRPNet does not just predict how much space is revealed but also where it is revealed, we can execute a sequence of actions that incrementally reveal more and more space beneath the plant foliage.
arXiv Detail & Related papers (2023-07-06T17:55:28Z) - CamDiff: Camouflage Image Augmentation via Diffusion Model [83.35960536063857]
CamDiff is a novel approach to synthesize salient objects in camouflaged scenes.
We leverage the latent diffusion model to synthesize salient objects in camouflaged scenes.
Our approach enables flexible editing and efficient large-scale dataset generation at a low cost.
arXiv Detail & Related papers (2023-04-11T19:37:47Z) - Towards Deeper Understanding of Camouflaged Object Detection [64.81987999832032]
We argue that the binary segmentation setting fails to fully understand the concept of camouflage.
We present the first triple-task learning framework to simultaneously localize, segment and rank camouflaged objects.
arXiv Detail & Related papers (2022-05-23T14:26:18Z) - Simultaneously Localize, Segment and Rank the Camouflaged Objects [55.46101599577343]
Camouflaged object detection aims to segment camouflaged objects hiding in their surroundings.
We argue that explicitly modeling the conspicuousness of camouflaged objects against their particular backgrounds can lead to a better understanding about camouflage and evolution of animals.
We present the first ranking based COD network (Rank-Net) to simultaneously localize, segment and rank camouflaged objects.
arXiv Detail & Related papers (2021-03-06T02:53:36Z) - CCA: Exploring the Possibility of Contextual Camouflage Attack on Object
Detection [16.384831731988204]
We propose a contextual camouflage attack (CCA) algorithm to in-fluence the performance of object detectors.
In this paper, we usean evolutionary search strategy and adversarial machine learningin interactions with a photo-realistic simulated environment.
Theproposed camouflages are validated effective to most of the state-of-the-art object detectors.
arXiv Detail & Related papers (2020-08-19T06:16:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.