Towards Active Participant-Centric Vertical Federated Learning: Some Representations May Be All You Need
- URL: http://arxiv.org/abs/2410.17648v1
- Date: Wed, 23 Oct 2024 08:07:00 GMT
- Title: Towards Active Participant-Centric Vertical Federated Learning: Some Representations May Be All You Need
- Authors: Jon Irureta, Jon Imaz, Aizea Lojo, Marco González, Iñigo Perona,
- Abstract summary: We introduce a novel simplified approach to Vertical Federated Learning (VFL)
Active Participant-Centric VFL allows the active participant to do inference in a non collaborative fashion.
This method integrates unsupervised representation learning with knowledge distillation to achieve comparable accuracy to traditional VFL methods.
- Score: 0.0
- License:
- Abstract: Vertical Federated Learning (VFL) enables collaborative model training across different participants with distinct features and common samples, while preserving data privacy. Existing VFL methodologies often struggle with realistic data partitions, typically incurring high communication costs and significant operational complexity. In this work, we introduce a novel simplified approach to VFL, Active Participant-Centric VFL (APC-VFL), that, to the best of our knowledge, is the first to require only a single communication round between participants, and allows the active participant to do inference in a non collaborative fashion. This method integrates unsupervised representation learning with knowledge distillation to achieve comparable accuracy to traditional VFL methods based on vertical split learning in classical settings, reducing required communication rounds by up to $4200\times$, while being more flexible. Our approach also shows improvements compared to non-federated local models, as well as a comparable VFL proposal, VFedTrans, offering an efficient and flexible solution for collaborative learning.
Related papers
- Vertical Federated Learning Hybrid Local Pre-training [4.31644387824845]
We propose a novel VFL Hybrid Local Pre-training (VFLHLP) approach for Vertical Federated Learning (VFL)
VFLHLP first pre-trains local networks on the local data of participating parties.
Then it utilizes these pre-trained networks to adjust the sub-model for the labeled party or enhance representation learning for other parties during downstream federated learning on aligned data.
arXiv Detail & Related papers (2024-05-20T08:57:39Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Unlocking the Potential of Prompt-Tuning in Bridging Generalized and
Personalized Federated Learning [49.72857433721424]
Vision Transformers (ViT) and Visual Prompt Tuning (VPT) achieve state-of-the-art performance with improved efficiency in various computer vision tasks.
We present a novel algorithm, SGPT, that integrates Generalized FL (GFL) and Personalized FL (PFL) approaches by employing a unique combination of both shared and group-specific prompts.
arXiv Detail & Related papers (2023-10-27T17:22:09Z) - VFLAIR: A Research Library and Benchmark for Vertical Federated Learning [14.878602173713686]
Vertical Learning (VFL) has emerged as a collaborative training paradigm that allows participants with different features of the same group of users to accomplish cooperative training without exposing their raw data or model parameters.
VFL has gained significant attention for its research potential and real-world applications in recent years, but still faces substantial challenges, such as in defending various kinds of data inference and backdoor attacks.
We present an Federated and lightweight VFL framework VFLAIR, which supports VFL training with a variety of models, datasets and protocols, along with standardized modules for comprehensive evaluations of attacks and defense strategies.
arXiv Detail & Related papers (2023-10-15T13:18:31Z) - Vertical Semi-Federated Learning for Efficient Online Advertising [50.18284051956359]
Semi-VFL (Vertical Semi-Federated Learning) is proposed to achieve a practical industry application fashion for VFL.
We build an inference-efficient single-party student model applicable to the whole sample space.
New representation distillation methods are designed to extract cross-party feature correlations for both the overlapped and non-overlapped data.
arXiv Detail & Related papers (2022-09-30T17:59:27Z) - Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM [62.62684911017472]
Federated learning (FL) enables devices to jointly train shared models while keeping the training data local for privacy purposes.
We introduce a VFL framework with multiple heads (VIM), which takes the separate contribution of each client into account.
VIM achieves significantly higher performance and faster convergence compared with the state-of-the-art.
arXiv Detail & Related papers (2022-07-20T23:14:33Z) - EFMVFL: An Efficient and Flexible Multi-party Vertical Federated
Learning without a Third Party [7.873139977724476]
Federated learning allows multiple participants to conduct joint modeling without disclosing their local data.
We propose a novel VFL framework without a third party called EFMVFL.
Our framework is secure, more efficient, and easy to be extended to multiple participants.
arXiv Detail & Related papers (2022-01-17T07:06:21Z) - Achieving Model Fairness in Vertical Federated Learning [47.8598060954355]
Vertical federated learning (VFL) enables multiple enterprises possessing non-overlapped features to strengthen their machine learning models without disclosing their private data and model parameters.
VFL suffers from fairness issues, i.e., the learned model may be unfairly discriminatory over the group with sensitive attributes.
We propose a fair VFL framework to tackle this problem.
arXiv Detail & Related papers (2021-09-17T04:40:11Z) - Practical One-Shot Federated Learning for Cross-Silo Setting [114.76232507580067]
One-shot federated learning is a promising approach to make federated learning applicable in cross-silo setting.
We propose a practical one-shot federated learning algorithm named FedKT.
By utilizing the knowledge transfer technique, FedKT can be applied to any classification models and can flexibly achieve differential privacy guarantees.
arXiv Detail & Related papers (2020-10-02T14:09:10Z) - Multi-Participant Multi-Class Vertical Federated Learning [16.75182305714081]
We propose the Multi-participant Multi-class Vertical Federated Learning (MMVFL) framework for multi-class VFL problems involving multiple parties.
MMVFL enables label sharing from its owner to other VFL participants in a privacypreserving manner.
Experiment results on real-world datasets show that MMVFL can effectively share label information among multiple VFL participants and match multi-class classification performance of existing approaches.
arXiv Detail & Related papers (2020-01-30T02:39:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.