Continual Learning on a Data Diet
- URL: http://arxiv.org/abs/2410.17715v1
- Date: Wed, 23 Oct 2024 09:42:17 GMT
- Title: Continual Learning on a Data Diet
- Authors: Elif Ceren Gok Yildirim, Murat Onur Yildirim, Joaquin Vanschoren,
- Abstract summary: Continual Learning (CL) methods usually learn from all available data.
Not all data points in a dataset have equal potential; some can be more informative than others.
This disparity may significantly impact the performance, as both the quality and quantity of samples directly influence the model's generalizability and efficiency.
- Score: 3.73232466691291
- License:
- Abstract: Continual Learning (CL) methods usually learn from all available data. However, this is not the case in human cognition which efficiently focuses on key experiences while disregarding the redundant information. Similarly, not all data points in a dataset have equal potential; some can be more informative than others. This disparity may significantly impact the performance, as both the quality and quantity of samples directly influence the model's generalizability and efficiency. Drawing inspiration from this, we explore the potential of learning from important samples and present an empirical study for evaluating coreset selection techniques in the context of CL to stimulate research in this unexplored area. We train different continual learners on increasing amounts of selected samples and investigate the learning-forgetting dynamics by shedding light on the underlying mechanisms driving their improved stability-plasticity balance. We present several significant observations: learning from selectively chosen samples (i) enhances incremental accuracy, (ii) improves knowledge retention of previous tasks, and (iii) refines learned representations. This analysis contributes to a deeper understanding of selective learning strategies in CL scenarios.
Related papers
- What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
Severe data imbalance naturally exists among web-scale vision-language datasets.
We find CLIP pre-trained thereupon exhibits notable robustness to the data imbalance compared to supervised learning.
The robustness and discriminability of CLIP improve with more descriptive language supervision, larger data scale, and broader open-world concepts.
arXiv Detail & Related papers (2024-05-31T17:57:24Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
Continual Learning aims to overcome the catastrophic forgetting of former knowledge when learning new ones.
This paper presents a comprehensive survey of the latest advancements in PTM-based CL.
arXiv Detail & Related papers (2024-01-29T18:27:52Z) - Advancing Deep Active Learning & Data Subset Selection: Unifying
Principles with Information-Theory Intuitions [3.0539022029583953]
This thesis aims to enhance the practicality of deep learning by improving the label and training efficiency of deep learning models.
We investigate data subset selection techniques, specifically active learning and active sampling, grounded in information-theoretic principles.
arXiv Detail & Related papers (2024-01-09T01:41:36Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - An Analysis of Initial Training Strategies for Exemplar-Free
Class-Incremental Learning [36.619804184427245]
Class-Incremental Learning (CIL) aims to build classification models from data streams.
Due to catastrophic forgetting, CIL is particularly challenging when examples from past classes cannot be stored.
Use of models pre-trained in a self-supervised way on large amounts of data has recently gained momentum.
arXiv Detail & Related papers (2023-08-22T14:06:40Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
We propose to retrieve unlabeled samples with a local sensitivity and hardness-aware acquisition function.
Our method achieves consistent gains over the commonly used active learning strategies in various classification tasks.
arXiv Detail & Related papers (2022-05-10T15:39:11Z) - CCLF: A Contrastive-Curiosity-Driven Learning Framework for
Sample-Efficient Reinforcement Learning [56.20123080771364]
We develop a model-agnostic Contrastive-Curiosity-Driven Learning Framework (CCLF) for reinforcement learning.
CCLF fully exploit sample importance and improve learning efficiency in a self-supervised manner.
We evaluate this approach on the DeepMind Control Suite, Atari, and MiniGrid benchmarks.
arXiv Detail & Related papers (2022-05-02T14:42:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.