Exploiting Text-Image Latent Spaces for the Description of Visual Concepts
- URL: http://arxiv.org/abs/2410.17832v1
- Date: Wed, 23 Oct 2024 12:51:07 GMT
- Title: Exploiting Text-Image Latent Spaces for the Description of Visual Concepts
- Authors: Laines Schmalwasser, Jakob Gawlikowski, Joachim Denzler, Julia Niebling,
- Abstract summary: Concept Activation Vectors (CAVs) offer insights into neural network decision-making by linking human friendly concepts to the model's internal feature extraction process.
When a new set of CAVs is discovered, they must still be translated into a human understandable description.
We propose an approach to aid the interpretation of newly discovered concept sets by suggesting textual descriptions for each CAV.
- Score: 13.287533148600248
- License:
- Abstract: Concept Activation Vectors (CAVs) offer insights into neural network decision-making by linking human friendly concepts to the model's internal feature extraction process. However, when a new set of CAVs is discovered, they must still be translated into a human understandable description. For image-based neural networks, this is typically done by visualizing the most relevant images of a CAV, while the determination of the concept is left to humans. In this work, we introduce an approach to aid the interpretation of newly discovered concept sets by suggesting textual descriptions for each CAV. This is done by mapping the most relevant images representing a CAV into a text-image embedding where a joint description of these relevant images can be computed. We propose utilizing the most relevant receptive fields instead of full images encoded. We demonstrate the capabilities of this approach in multiple experiments with and without given CAV labels, showing that the proposed approach provides accurate descriptions for the CAVs and reduces the challenge of concept interpretation.
Related papers
- Visual-TCAV: Concept-based Attribution and Saliency Maps for Post-hoc Explainability in Image Classification [3.9626211140865464]
Convolutional Neural Networks (CNNs) have seen significant performance improvements in recent years.
However, due to their size and complexity, they function as black-boxes, leading to transparency concerns.
This paper introduces a novel post-hoc explainability framework, Visual-TCAV, which aims to bridge the gap between these methods.
arXiv Detail & Related papers (2024-11-08T16:52:52Z) - Explainable Concept Generation through Vision-Language Preference Learning [7.736445799116692]
Concept-based explanations have become a popular choice for explaining deep neural networks post-hoc.
We devise a reinforcement learning-based preference optimization algorithm that fine-tunes the vision-language generative model.
In addition to showing the efficacy and reliability of our method, we show how our method can be used as a diagnostic tool for analyzing neural networks.
arXiv Detail & Related papers (2024-08-24T02:26:42Z) - TextCAVs: Debugging vision models using text [37.4673705484723]
We introduce TextCAVs: a novel method which creates concept activation vectors (CAVs) using text descriptions of the concept.
In early experimental results, we demonstrate that TextCAVs produces reasonable explanations for a chest x-ray dataset (MIMIC-CXR) and natural images (ImageNet)
arXiv Detail & Related papers (2024-08-16T10:36:08Z) - Visual Concept-driven Image Generation with Text-to-Image Diffusion Model [65.96212844602866]
Text-to-image (TTI) models have demonstrated impressive results in generating high-resolution images of complex scenes.
Recent approaches have extended these methods with personalization techniques that allow them to integrate user-illustrated concepts.
However, the ability to generate images with multiple interacting concepts, such as human subjects, as well as concepts that may be entangled in one, or across multiple, image illustrations remains illusive.
We propose a concept-driven TTI personalization framework that addresses these core challenges.
arXiv Detail & Related papers (2024-02-18T07:28:37Z) - Advancing Visual Grounding with Scene Knowledge: Benchmark and Method [74.72663425217522]
Visual grounding (VG) aims to establish fine-grained alignment between vision and language.
Most existing VG datasets are constructed using simple description texts.
We propose a novel benchmark of underlineScene underlineKnowledge-guided underlineVisual underlineGrounding.
arXiv Detail & Related papers (2023-07-21T13:06:02Z) - General Image-to-Image Translation with One-Shot Image Guidance [5.89808526053682]
We propose a novel framework named visual concept translator (VCT)
It has the ability to preserve content in the source image and translate the visual concepts guided by a single reference image.
Given only one reference image, the proposed VCT can complete a wide range of general image-to-image translation tasks with excellent results.
arXiv Detail & Related papers (2023-07-20T16:37:49Z) - Identifying Interpretable Subspaces in Image Representations [54.821222487956355]
We propose a framework to explain features of image representations using Contrasting Concepts (FALCON)
For a target feature, FALCON captions its highly activating cropped images using a large captioning dataset and a pre-trained vision-language model like CLIP.
Each word among the captions is scored and ranked leading to a small number of shared, human-understandable concepts.
arXiv Detail & Related papers (2023-07-20T00:02:24Z) - Break-A-Scene: Extracting Multiple Concepts from a Single Image [80.47666266017207]
We introduce the task of textual scene decomposition.
We propose augmenting the input image with masks that indicate the presence of target concepts.
We then present a novel two-phase customization process.
arXiv Detail & Related papers (2023-05-25T17:59:04Z) - FALCON: Fast Visual Concept Learning by Integrating Images, Linguistic
descriptions, and Conceptual Relations [99.54048050189971]
We present a framework for learning new visual concepts quickly, guided by multiple naturally occurring data streams.
The learned concepts support downstream applications, such as answering questions by reasoning about unseen images.
We demonstrate the effectiveness of our model on both synthetic and real-world datasets.
arXiv Detail & Related papers (2022-03-30T19:45:00Z) - Interactive Disentanglement: Learning Concepts by Interacting with their
Prototype Representations [15.284688801788912]
We show the advantages of prototype representations for understanding and revising the latent space of neural concept learners.
For this purpose, we introduce interactive Concept Swapping Networks (iCSNs)
iCSNs learn to bind conceptual information to specific prototype slots by swapping the latent representations of paired images.
arXiv Detail & Related papers (2021-12-04T09:25:40Z) - Learning Representations by Predicting Bags of Visual Words [55.332200948110895]
Self-supervised representation learning targets to learn convnet-based image representations from unlabeled data.
Inspired by the success of NLP methods in this area, in this work we propose a self-supervised approach based on spatially dense image descriptions.
arXiv Detail & Related papers (2020-02-27T16:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.