Few-shot NeRF by Adaptive Rendering Loss Regularization
- URL: http://arxiv.org/abs/2410.17839v1
- Date: Wed, 23 Oct 2024 13:05:26 GMT
- Title: Few-shot NeRF by Adaptive Rendering Loss Regularization
- Authors: Qingshan Xu, Xuanyu Yi, Jianyao Xu, Wenbing Tao, Yew-Soon Ong, Hanwang Zhang,
- Abstract summary: Novel view synthesis with sparse inputs poses great challenges to Neural Radiance Field (NeRF)
Recent works demonstrate that the frequency regularization of Positional rendering can achieve promising results for few-shot NeRF.
We propose Adaptive Rendering loss regularization for few-shot NeRF, dubbed AR-NeRF.
- Score: 78.50710219013301
- License:
- Abstract: Novel view synthesis with sparse inputs poses great challenges to Neural Radiance Field (NeRF). Recent works demonstrate that the frequency regularization of Positional Encoding (PE) can achieve promising results for few-shot NeRF. In this work, we reveal that there exists an inconsistency between the frequency regularization of PE and rendering loss. This prevents few-shot NeRF from synthesizing higher-quality novel views. To mitigate this inconsistency, we propose Adaptive Rendering loss regularization for few-shot NeRF, dubbed AR-NeRF. Specifically, we present a two-phase rendering supervision and an adaptive rendering loss weight learning strategy to align the frequency relationship between PE and 2D-pixel supervision. In this way, AR-NeRF can learn global structures better in the early training phase and adaptively learn local details throughout the training process. Extensive experiments show that our AR-NeRF achieves state-of-the-art performance on different datasets, including object-level and complex scenes.
Related papers
- FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method.
During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images.
During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images.
arXiv Detail & Related papers (2024-08-25T03:53:17Z) - SGCNeRF: Few-Shot Neural Rendering via Sparse Geometric Consistency Guidance [106.0057551634008]
FreeNeRF attempts to overcome this limitation by integrating implicit geometry regularization.
New study introduces a novel feature matching based sparse geometry regularization module.
module excels in pinpointing high-frequency keypoints, thereby safeguarding the integrity of fine details.
arXiv Detail & Related papers (2024-04-01T08:37:57Z) - NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
We propose NeRF-VPT, an innovative method for novel view synthesis to address these challenges.
Our proposed NeRF-VPT employs a cascading view prompt tuning paradigm, wherein RGB information gained from preceding rendering outcomes serves as instructive visual prompts for subsequent rendering stages.
NeRF-VPT only requires sampling RGB data from previous stage renderings as priors at each training stage, without relying on extra guidance or complex techniques.
arXiv Detail & Related papers (2024-03-02T22:08:10Z) - FlipNeRF: Flipped Reflection Rays for Few-shot Novel View Synthesis [30.25904672829623]
We propose FlipNeRF, a novel regularization method for few-shot novel view synthesis by utilizing our proposed flipped reflection rays.
FlipNeRF is able to estimate more reliable outputs with reducing floating artifacts effectively across the different scene structures.
arXiv Detail & Related papers (2023-06-30T15:11:00Z) - From NeRFLiX to NeRFLiX++: A General NeRF-Agnostic Restorer Paradigm [57.73868344064043]
We propose NeRFLiX, a general NeRF-agnostic restorer paradigm that learns a degradation-driven inter-viewpoint mixer.
We also present NeRFLiX++ with a stronger two-stage NeRF degradation simulator and a faster inter-viewpoint mixer.
NeRFLiX++ is capable of restoring photo-realistic ultra-high-resolution outputs from noisy low-resolution NeRF-rendered views.
arXiv Detail & Related papers (2023-06-10T09:19:19Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
This paper proposes Clean-NeRF for accurate 3D reconstruction and novel view rendering in complex scenes.
Clean-NeRF can be implemented as a plug-in that can immediately benefit existing NeRF-based methods without additional input.
arXiv Detail & Related papers (2023-03-26T12:24:31Z) - FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency
Regularization [32.1581416980828]
We present Frequency regularized NeRF (FreeNeRF), a surprisingly simple baseline that outperforms previous methods.
We analyze the key challenges in few-shot neural rendering and find that frequency plays an important role in NeRF's training.
arXiv Detail & Related papers (2023-03-13T18:59:03Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
We propose Augmented NeRF (Aug-NeRF), which for the first time brings the power of robust data augmentations into regularizing the NeRF training.
Our proposal learns to seamlessly blend worst-case perturbations into three distinct levels of the NeRF pipeline.
Aug-NeRF effectively boosts NeRF performance in both novel view synthesis and underlying geometry reconstruction.
arXiv Detail & Related papers (2022-07-04T02:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.