Theoretically Grounded Pruning of Large Ground Sets for Constrained, Discrete Optimization
- URL: http://arxiv.org/abs/2410.17945v1
- Date: Wed, 23 Oct 2024 15:18:07 GMT
- Title: Theoretically Grounded Pruning of Large Ground Sets for Constrained, Discrete Optimization
- Authors: Ankur Nath, Alan Kuhnle,
- Abstract summary: We develop light-weight pruning algorithms to discard elements that are unlikely to be part of an optimal solution.
Under mild assumptions, we prove theoretical guarantees on the fraction of the optimal value retained and the size of the resulting pruned ground set.
Our algorithm, QuickPrune, efficiently prunes over 90% of the ground set and outperforms state-of-the-art classical and machine learnings for pruning.
- Score: 12.016449555335976
- License:
- Abstract: Modern instances of combinatorial optimization problems often exhibit billion-scale ground sets, which have many uninformative or redundant elements. In this work, we develop light-weight pruning algorithms to quickly discard elements that are unlikely to be part of an optimal solution. Under mild assumptions on the instance, we prove theoretical guarantees on the fraction of the optimal value retained and the size of the resulting pruned ground set. Through extensive experiments on real-world datasets for various applications, we demonstrate that our algorithm, QuickPrune, efficiently prunes over 90% of the ground set and outperforms state-of-the-art classical and machine learning heuristics for pruning.
Related papers
- Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Fast Bayesian Optimization of Needle-in-a-Haystack Problems using
Zooming Memory-Based Initialization [73.96101108943986]
A Needle-in-a-Haystack problem arises when there is an extreme imbalance of optimum conditions relative to the size of the dataset.
We present a Zooming Memory-Based Initialization algorithm that builds on conventional Bayesian optimization principles.
arXiv Detail & Related papers (2022-08-26T23:57:41Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Data-Efficient Structured Pruning via Submodular Optimization [32.574190896543705]
We propose a data-efficient structured pruning method based on submodular optimization.
We show that this selection problem is a weakly submodular problem, thus it can be provably approximated using an efficient greedy algorithm.
Our method is one of the few in the literature that uses only a limited-number of training data and no labels.
arXiv Detail & Related papers (2022-03-09T18:40:29Z) - Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time
Mobile Acceleration [71.80326738527734]
We propose a general, fine-grained structured pruning scheme and corresponding compiler optimizations.
We show that our pruning scheme mapping methods, together with the general fine-grained structured pruning scheme, outperform the state-of-the-art DNN optimization framework.
arXiv Detail & Related papers (2021-11-22T23:53:14Z) - Learning to Hash Robustly, with Guarantees [79.68057056103014]
In this paper, we design an NNS algorithm for the Hamming space that has worst-case guarantees essentially matching that of theoretical algorithms.
We evaluate the algorithm's ability to optimize for a given dataset both theoretically and practically.
Our algorithm has a 1.8x and 2.1x better recall on the worst-performing queries to the MNIST and ImageNet datasets.
arXiv Detail & Related papers (2021-08-11T20:21:30Z) - Strong Optimal Classification Trees [8.10995244893652]
We propose an intuitive flow-based MIO formulation for learning optimal binary classification trees.
Our formulation can accommodate side constraints to enable the design of interpretable and fair decision trees.
We show that our proposed approaches are 29 times faster than state-of-the-art MIO-based techniques.
arXiv Detail & Related papers (2021-03-29T21:40:58Z) - Stochastic Optimization Forests [60.523606291705214]
We show how to train forest decision policies by growing trees that choose splits to directly optimize the downstream decision quality, rather than splitting to improve prediction accuracy as in the standard random forest algorithm.
We show that our approximate splitting criteria can reduce running time hundredfold, while achieving performance close to forest algorithms that exactly re-optimize for every candidate split.
arXiv Detail & Related papers (2020-08-17T16:56:06Z) - Structure Adaptive Algorithms for Stochastic Bandits [22.871155520200773]
We study reward maximisation in a class of structured multi-armed bandit problems.
The mean rewards of arms satisfy some given structural constraints.
We develop algorithms from instance-dependent lower-bounds using iterative saddle-point solvers.
arXiv Detail & Related papers (2020-07-02T08:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.