Federated Transformer: Multi-Party Vertical Federated Learning on Practical Fuzzily Linked Data
- URL: http://arxiv.org/abs/2410.17986v1
- Date: Wed, 23 Oct 2024 16:00:14 GMT
- Title: Federated Transformer: Multi-Party Vertical Federated Learning on Practical Fuzzily Linked Data
- Authors: Zhaomin Wu, Junyi Hou, Yiqun Diao, Bingsheng He,
- Abstract summary: We introduce the Federated Transformer (FeT), a novel framework that supports multi-party fuzzy VFL with fuzzy identifiers.
Our experiments demonstrate that the FeT surpasses the baseline models by up to 46% in terms of accuracy when scaled to 50 parties.
In two-party fuzzy VFL settings, FeT also shows improved performance and privacy over cutting-edge VFL models.
- Score: 27.073959939557362
- License:
- Abstract: Federated Learning (FL) is an evolving paradigm that enables multiple parties to collaboratively train models without sharing raw data. Among its variants, Vertical Federated Learning (VFL) is particularly relevant in real-world, cross-organizational collaborations, where distinct features of a shared instance group are contributed by different parties. In these scenarios, parties are often linked using fuzzy identifiers, leading to a common practice termed as multi-party fuzzy VFL. Existing models generally address either multi-party VFL or fuzzy VFL between two parties. Extending these models to practical multi-party fuzzy VFL typically results in significant performance degradation and increased costs for maintaining privacy. To overcome these limitations, we introduce the Federated Transformer (FeT), a novel framework that supports multi-party VFL with fuzzy identifiers. FeT innovatively encodes these identifiers into data representations and employs a transformer architecture distributed across different parties, incorporating three new techniques to enhance performance. Furthermore, we have developed a multi-party privacy framework for VFL that integrates differential privacy with secure multi-party computation, effectively protecting local representations while minimizing associated utility costs. Our experiments demonstrate that the FeT surpasses the baseline models by up to 46\% in terms of accuracy when scaled to 50 parties. Additionally, in two-party fuzzy VFL settings, FeT also shows improved performance and privacy over cutting-edge VFL models.
Related papers
- TabVFL: Improving Latent Representation in Vertical Federated Learning [6.602969765752305]
TabVFL is a distributed framework designed to improve latent representation learning using the joint features of participants.
In this paper, we propose TabVFL, a distributed framework designed to improve latent representation learning using the joint features of participants.
arXiv Detail & Related papers (2024-04-27T19:40:35Z) - A Bargaining-based Approach for Feature Trading in Vertical Federated
Learning [54.51890573369637]
We propose a bargaining-based feature trading approach in Vertical Federated Learning (VFL) to encourage economically efficient transactions.
Our model incorporates performance gain-based pricing, taking into account the revenue-based optimization objectives of both parties.
arXiv Detail & Related papers (2024-02-23T10:21:07Z) - Unlocking the Potential of Prompt-Tuning in Bridging Generalized and
Personalized Federated Learning [49.72857433721424]
Vision Transformers (ViT) and Visual Prompt Tuning (VPT) achieve state-of-the-art performance with improved efficiency in various computer vision tasks.
We present a novel algorithm, SGPT, that integrates Generalized FL (GFL) and Personalized FL (PFL) approaches by employing a unique combination of both shared and group-specific prompts.
arXiv Detail & Related papers (2023-10-27T17:22:09Z) - FedWon: Triumphing Multi-domain Federated Learning Without Normalization [50.49210227068574]
Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients.
However, Federated learning (FL) encounters challenges due to non-independent and identically distributed (non-i.i.d) data.
We propose a novel method called Federated learning Without normalizations (FedWon) to address the multi-domain problem in FL.
arXiv Detail & Related papers (2023-06-09T13:18:50Z) - Hijack Vertical Federated Learning Models As One Party [43.095945038428404]
Vertical federated learning (VFL) is an emerging paradigm that enables collaborators to build machine learning models together in a distributed fashion.
Existing VFL frameworks use cryptographic techniques to provide data privacy and security guarantees.
arXiv Detail & Related papers (2022-12-01T07:12:38Z) - Vertical Semi-Federated Learning for Efficient Online Advertising [50.18284051956359]
Semi-VFL (Vertical Semi-Federated Learning) is proposed to achieve a practical industry application fashion for VFL.
We build an inference-efficient single-party student model applicable to the whole sample space.
New representation distillation methods are designed to extract cross-party feature correlations for both the overlapped and non-overlapped data.
arXiv Detail & Related papers (2022-09-30T17:59:27Z) - BlindFL: Vertical Federated Machine Learning without Peeking into Your
Data [20.048695060411774]
Vertical federated learning (VFL) describes a case where ML models are built upon the private data of different participated parties.
We introduce BlindFL, a novel framework for VFL training and inference.
We show that BlindFL supports diverse datasets and models efficiently whilst achieving robust privacy guarantees.
arXiv Detail & Related papers (2022-06-16T07:26:50Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - EFMVFL: An Efficient and Flexible Multi-party Vertical Federated
Learning without a Third Party [7.873139977724476]
Federated learning allows multiple participants to conduct joint modeling without disclosing their local data.
We propose a novel VFL framework without a third party called EFMVFL.
Our framework is secure, more efficient, and easy to be extended to multiple participants.
arXiv Detail & Related papers (2022-01-17T07:06:21Z) - Secure Bilevel Asynchronous Vertical Federated Learning with Backward
Updating [159.48259714642447]
Vertical scalable learning (VFL) attracts increasing attention due to the demands of multi-party collaborative modeling and concerns of privacy leakage.
We propose a novel bftextlevel parallel architecture (VF$bfB2$), under which three new algorithms, including VF$B2$, are proposed.
arXiv Detail & Related papers (2021-03-01T12:34:53Z) - Multi-Participant Multi-Class Vertical Federated Learning [16.75182305714081]
We propose the Multi-participant Multi-class Vertical Federated Learning (MMVFL) framework for multi-class VFL problems involving multiple parties.
MMVFL enables label sharing from its owner to other VFL participants in a privacypreserving manner.
Experiment results on real-world datasets show that MMVFL can effectively share label information among multiple VFL participants and match multi-class classification performance of existing approaches.
arXiv Detail & Related papers (2020-01-30T02:39:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.