Quantum optomechanical control of long-lived bulk acoustic phonons
- URL: http://arxiv.org/abs/2410.18037v1
- Date: Wed, 23 Oct 2024 17:06:27 GMT
- Title: Quantum optomechanical control of long-lived bulk acoustic phonons
- Authors: Hilel Hagai Diamandi, Yizhi Luo, David Mason, Tevfik Bulent Kanmaz, Sayan Ghosh, Margaret Pavlovich, Taekwan Yoon, Ryan Behunin, Shruti Puri, Jack G. E. Harris, Peter T. Rakich,
- Abstract summary: Microfabricated high-overtone bulk acoustic wave resonators ($mathrmmu$HBARs) have been shown to support high-frequency mechanical modes with exceptionally long coherence times.
We demonstrate a new optomechanical system that permits quantum optomechanical control of individual high-coherence phonon modes.
- Score: 3.4292904169929446
- License:
- Abstract: High-fidelity quantum optomechanical control of a mechanical oscillator requires the ability to perform efficient, low-noise operations on long-lived phononic excitations. Microfabricated high-overtone bulk acoustic wave resonators ($\mathrm{\mu}$HBARs) have been shown to support high-frequency (> 10 GHz) mechanical modes with exceptionally long coherence times (> 1.5 ms), making them a compelling resource for quantum optomechanical experiments. In this paper, we demonstrate a new optomechanical system that permits quantum optomechanical control of individual high-coherence phonon modes supported by such $\mathrm{\mu}$HBARs for the first time. We use this system to perform laser cooling of such ultra-massive (7.5 $\mathrm{\mu}$g) high frequency (12.6 GHz) phonon modes from an occupation of ${\sim}$22 to fewer than 0.4 phonons, corresponding to laser-based ground-state cooling of the most massive mechanical object to date. Through these laser cooling experiments, no absorption-induced heating is observed, demonstrating the resilience of the $\mathrm{\mu}$HBAR against parasitic heating. The unique features of such $\mathrm{\mu}$HBARs make them promising as the basis for a new class of quantum optomechanical systems that offer enhanced robustness to decoherence, necessary for efficient, low-noise photon-phonon conversion.
Related papers
- A two-dimensional optomechanical crystal for quantum transduction [2.6639400132237343]
Integrated optomechanical systems are one of the leading platforms for manipulating, sensing, and distributing quantum information.
In this work, we demonstrate a two-dimensional optomechanical crystal geometry, named textbfb-dagger, that alleviates this problem.
Our results extend the boundaries of optomechanical system capabilities and establish a robust foundation for the next generation of microwave-to-optical transducers.
arXiv Detail & Related papers (2024-06-20T16:47:13Z) - Brillouin optomechanics in the quantum ground state [0.0]
Bulk acoustic wave (BAW) resonators are attractive as intermediaries in a microwave-to-optical transducer.
In this work, we demonstrate ground state operation of a Brillouin optomechanical system composed of a quartz BAW resonator inside an optical cavity.
arXiv Detail & Related papers (2023-03-08T15:56:52Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - A quantum electromechanical interface for long-lived phonons [6.050453270663202]
We present an electromechanical system capable of operating in the GHz-frequency band in a silicon-on-insulator platform.
We find the cavity-mechanics system in the quantum ground state by performing sideband thermometry measurements.
arXiv Detail & Related papers (2022-07-22T09:38:40Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Nanomechanical resonators with ultra-high-$Q$ perimeter modes [0.0]
A new approach to soft clamping exploits vibrations in the perimeter of polygon-shaped resonators tethered at their vertices.
Perimeter modes reach $Q$ of 3.6 billion at room temperature while spanning only two acoustic wavelengths.
Our devices make them well-suited for near-field integration with microcavities for quantum optomechanical experiments.
arXiv Detail & Related papers (2021-08-08T11:42:21Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Four-wave-cooling to the single phonon level in Kerr optomechanics [0.0]
We present a flux-mediated optomechanical device combining a superconducting quantum interference cavity with a mechanical nanobeam.
We demonstrate how the intrinsic Kerr nonlinearity of the microwave circuit can be used for a counter-intuitive blue-detuned sideband-cooling scheme.
arXiv Detail & Related papers (2021-04-06T13:46:55Z) - Open-cavity in closed-cycle cryostat as a quantum optics platform [47.50219326456544]
We present a fiber-based open Fabry-P'erot cavity in a closed-cycle cryostat exhibiting ultra-high mechanical stability.
This set of results manifests open-cavity in a closed-cycle cryostat as a versatile and powerful platform for low-temperature cavity QED experiments.
arXiv Detail & Related papers (2021-03-09T18:41:48Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.