Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration
- URL: http://arxiv.org/abs/2410.18076v1
- Date: Wed, 23 Oct 2024 17:58:45 GMT
- Title: Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration
- Authors: Max Wilcoxson, Qiyang Li, Kevin Frans, Sergey Levine,
- Abstract summary: We study how unlabeled prior trajectory data can be leveraged to learn efficient exploration strategies.
Our method SUPE (Skills from Unlabeled Prior data for Exploration) demonstrates that a careful combination of these ideas compounds their benefits.
We empirically show that SUPE reliably outperforms prior strategies, successfully solving a suite of long-horizon, sparse-reward tasks.
- Score: 54.8229698058649
- License:
- Abstract: Unsupervised pretraining has been transformative in many supervised domains. However, applying such ideas to reinforcement learning (RL) presents a unique challenge in that fine-tuning does not involve mimicking task-specific data, but rather exploring and locating the solution through iterative self-improvement. In this work, we study how unlabeled prior trajectory data can be leveraged to learn efficient exploration strategies. While prior data can be used to pretrain a set of low-level skills, or as additional off-policy data for online RL, it has been unclear how to combine these ideas effectively for online exploration. Our method SUPE (Skills from Unlabeled Prior data for Exploration) demonstrates that a careful combination of these ideas compounds their benefits. Our method first extracts low-level skills using a variational autoencoder (VAE), and then pseudo-relabels unlabeled trajectories using an optimistic reward model, transforming prior data into high-level, task-relevant examples. Finally, SUPE uses these transformed examples as additional off-policy data for online RL to learn a high-level policy that composes pretrained low-level skills to explore efficiently. We empirically show that SUPE reliably outperforms prior strategies, successfully solving a suite of long-horizon, sparse-reward tasks. Code: https://github.com/rail-berkeley/supe.
Related papers
- Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - Accelerating Exploration with Unlabeled Prior Data [66.43995032226466]
We study how prior data without reward labels may be used to guide and accelerate exploration for an agent solving a new sparse reward task.
We propose a simple approach that learns a reward model from online experience, labels the unlabeled prior data with optimistic rewards, and then uses it concurrently alongside the online data for downstream policy and critic optimization.
arXiv Detail & Related papers (2023-11-09T00:05:17Z) - Efficient Online Reinforcement Learning with Offline Data [78.92501185886569]
We show that we can simply apply existing off-policy methods to leverage offline data when learning online.
We extensively ablate these design choices, demonstrating the key factors that most affect performance.
We see that correct application of these simple recommendations can provide a $mathbf2.5times$ improvement over existing approaches.
arXiv Detail & Related papers (2023-02-06T17:30:22Z) - Offline Meta-Reinforcement Learning with Online Self-Supervision [66.42016534065276]
We propose a hybrid offline meta-RL algorithm, which uses offline data with rewards to meta-train an adaptive policy.
Our method uses the offline data to learn the distribution of reward functions, which is then sampled to self-supervise reward labels for the additional online data.
We find that using additional data and self-generated rewards significantly improves an agent's ability to generalize.
arXiv Detail & Related papers (2021-07-08T17:01:32Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
We show that our method, advantage weighted actor critic (AWAC), enables rapid learning of skills with a combination of prior demonstration data and online experience.
Our results show that incorporating prior data can reduce the time required to learn a range of robotic skills to practical time-scales.
arXiv Detail & Related papers (2020-06-16T17:54:41Z) - Generalized Hindsight for Reinforcement Learning [154.0545226284078]
We argue that low-reward data collected while trying to solve one task provides little to no signal for solving that particular task.
We present Generalized Hindsight: an approximate inverse reinforcement learning technique for relabeling behaviors with the right tasks.
arXiv Detail & Related papers (2020-02-26T18:57:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.