Quantum linear system algorithm with optimal queries to initial state preparation
- URL: http://arxiv.org/abs/2410.18178v1
- Date: Wed, 23 Oct 2024 18:00:01 GMT
- Title: Quantum linear system algorithm with optimal queries to initial state preparation
- Authors: Guang Hao Low, Yuan Su,
- Abstract summary: Quantum algorithms for linear systems produce the solution state $A-1|brangle$ by querying two oracles.
We present a quantum linear system algorithm making $mathbfThetaleft (1/sqrtpright)$ queries to $O_b$, which is optimal in the success probability.
In various applications such as solving differential equations, we can further improve the dependence on $p$ using a block preconditioning scheme.
- Score: 0.0
- License:
- Abstract: Quantum algorithms for linear systems produce the solution state $A^{-1}|b\rangle$ by querying two oracles: $O_A$ that block encodes the coefficient matrix and $O_b$ that prepares the initial state. We present a quantum linear system algorithm making $\mathbf{\Theta}\left(1/\sqrt{p}\right)$ queries to $O_b$, which is optimal in the success probability, and $\mathbf{O}\left(\kappa\log\left(1/p\right)\left(\log\log\left(1/p\right)+\log\left({1}/{\epsilon}\right)\right)\right)$ queries to $O_A$, nearly optimal in all parameters including the condition number and accuracy. Notably, our complexity scaling of initial state preparation holds even when $p$ is not known $\textit{a priori}$. This contrasts with recent results achieving $\mathbf{O}\left(\kappa\log\left({1}/{\epsilon}\right)\right)$ complexity to both oracles, which, while optimal in $O_A$, is highly suboptimal in $O_b$ as $\kappa$ can be arbitrarily larger than $1/\sqrt{p}$. In various applications such as solving differential equations, preparing ground states of operators with real spectra, and estimating and transforming eigenvalues of non-normal matrices, we can further improve the dependence on $p$ using a block preconditioning scheme to nearly match or outperform best previous results based on other methods, which also furnishes an extremely simple quantum linear system algorithm with an optimal query complexity to $O_A$. Underlying our results is a new Variable Time Amplitude Amplification algorithm with Tunable thresholds (Tunable VTAA), which fully characterizes generic nested amplitude amplifications, improves the $\ell_1$-norm input cost scaling of Ambainis to an $\ell_{\frac{2}{3}}$-quasinorm scaling, and admits a deterministic amplification schedule for the quantum linear system problem.
Related papers
- A shortcut to an optimal quantum linear system solver [55.2480439325792]
We give a conceptually simple quantum linear system solvers (QLSS) that does not use complex or difficult-to-analyze techniques.
If the solution norm $lVertboldsymbolxrVert$ is known exactly, our QLSS requires only a single application of kernel.
Alternatively, by reintroducing a concept from the adiabatic path-following technique, we show that $O(kappa)$ complexity can be achieved for norm estimation.
arXiv Detail & Related papers (2024-06-17T20:54:11Z) - Fine-grained Analysis and Faster Algorithms for Iteratively Solving Linear Systems [9.30306458153248]
We consider the spectral tail condition number, $kappa_ell$, defined as the ratio between the $ell$th largest and the smallest singular value of the matrix representing the system.
Some of the implications of our result, and of the use of $kappa_ell$, include direct improvement over a fine-grained analysis of the Conjugate method.
arXiv Detail & Related papers (2024-05-09T14:56:49Z) - Solving Dense Linear Systems Faster Than via Preconditioning [1.8854491183340518]
We show that our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
In particular, our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
Our main algorithm can be viewed as a randomized block coordinate descent method.
arXiv Detail & Related papers (2023-12-14T12:53:34Z) - Fast and Practical Quantum-Inspired Classical Algorithms for Solving
Linear Systems [11.929584800629673]
We propose fast and practical quantum-inspired classical algorithms for solving linear systems.
Our main contribution is the application of the heavy ball momentum method to quantum-inspired classical algorithms for solving linear systems.
arXiv Detail & Related papers (2023-07-13T08:46:19Z) - Optimal Query Complexities for Dynamic Trace Estimation [59.032228008383484]
We consider the problem of minimizing the number of matrix-vector queries needed for accurate trace estimation in the dynamic setting where our underlying matrix is changing slowly.
We provide a novel binary tree summation procedure that simultaneously estimates all $m$ traces up to $epsilon$ error with $delta$ failure probability.
Our lower bounds (1) give the first tight bounds for Hutchinson's estimator in the matrix-vector product model with Frobenius norm error even in the static setting, and (2) are the first unconditional lower bounds for dynamic trace estimation.
arXiv Detail & Related papers (2022-09-30T04:15:44Z) - Efficient quantum algorithms for solving quantum linear system problems [0.0]
We present two quantum algorithms for solving the problem of finding the right singular vector with singular value zero of an augmented matrix $C$.
Both algorithms meet the optimal query complexity in $kappa $, and are simpler than previous algorithms.
arXiv Detail & Related papers (2022-08-14T02:49:26Z) - Faster quantum-inspired algorithms for solving linear systems [0.05076419064097732]
We show that there is a classical algorithm that outputs a data structure for $x$ allowing sampling and querying to the entries.
This output can be viewed as a classical analogue to the output of quantum linear solvers.
arXiv Detail & Related papers (2021-03-18T15:12:44Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - Agnostic Q-learning with Function Approximation in Deterministic
Systems: Tight Bounds on Approximation Error and Sample Complexity [94.37110094442136]
We study the problem of agnostic $Q$-learning with function approximation in deterministic systems.
We show that if $delta = Oleft(rho/sqrtdim_Eright)$, then one can find the optimal policy using $Oleft(dim_Eright)$.
arXiv Detail & Related papers (2020-02-17T18:41:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.