Neural Cover Selection for Image Steganography
- URL: http://arxiv.org/abs/2410.18216v1
- Date: Wed, 23 Oct 2024 18:32:34 GMT
- Title: Neural Cover Selection for Image Steganography
- Authors: Karl Chahine, Hyeji Kim,
- Abstract summary: In steganography, selecting an optimal cover image, referred to as cover selection, is pivotal for effective message concealment.
Inspired by recent advancements in generative models, we introduce a novel cover selection framework.
Our method shows significant advantages in message recovery and image quality.
- Score: 7.7961128660417325
- License:
- Abstract: In steganography, selecting an optimal cover image, referred to as cover selection, is pivotal for effective message concealment. Traditional methods have typically employed exhaustive searches to identify images that conform to specific perceptual or complexity metrics. However, the relationship between these metrics and the actual message hiding efficacy of an image is unclear, often yielding less-than-ideal steganographic outcomes. Inspired by recent advancements in generative models, we introduce a novel cover selection framework, which involves optimizing within the latent space of pretrained generative models to identify the most suitable cover images, distinguishing itself from traditional exhaustive search methods. Our method shows significant advantages in message recovery and image quality. We also conduct an information-theoretic analysis of the generated cover images, revealing that message hiding predominantly occurs in low-variance pixels, reflecting the waterfilling algorithm's principles in parallel Gaussian channels. Our code can be found at: https://github.com/karlchahine/Neural-Cover-Selection-for-Image-Steganography.
Related papers
- FreeCompose: Generic Zero-Shot Image Composition with Diffusion Prior [50.0535198082903]
We offer a novel approach to image composition, which integrates multiple input images into a single, coherent image.
We showcase the potential of utilizing the powerful generative prior inherent in large-scale pre-trained diffusion models to accomplish generic image composition.
arXiv Detail & Related papers (2024-07-06T03:35:43Z) - Text-to-Image Diffusion Models are Great Sketch-Photo Matchmakers [120.49126407479717]
This paper explores text-to-image diffusion models for Zero-Shot Sketch-based Image Retrieval (ZS-SBIR)
We highlight a pivotal discovery: the capacity of text-to-image diffusion models to seamlessly bridge the gap between sketches and photos.
arXiv Detail & Related papers (2024-03-12T00:02:03Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
We propose a novel Coarse-to-Fine Latent Diffusion (CFLD) method for Pose-Guided Person Image Synthesis (PGPIS)
A perception-refined decoder is designed to progressively refine a set of learnable queries and extract semantic understanding of person images as a coarse-grained prompt.
arXiv Detail & Related papers (2024-02-28T06:07:07Z) - From Text to Mask: Localizing Entities Using the Attention of Text-to-Image Diffusion Models [38.14123683674355]
We propose a method to utilize the attention mechanism in the denoising network of text-to-image diffusion models.
We evaluate our method on Pascal VOC 2012 and Microsoft COCO 2014 under weakly-supervised semantic segmentation setting.
Our work reveals a novel way to extract the rich multi-modal knowledge hidden in diffusion models for segmentation.
arXiv Detail & Related papers (2023-09-08T04:10:01Z) - Conditional Score Guidance for Text-Driven Image-to-Image Translation [52.73564644268749]
We present a novel algorithm for text-driven image-to-image translation based on a pretrained text-to-image diffusion model.
Our method aims to generate a target image by selectively editing the regions of interest in a source image.
arXiv Detail & Related papers (2023-05-29T10:48:34Z) - Learned Spatial Representations for Few-shot Talking-Head Synthesis [68.3787368024951]
We propose a novel approach for few-shot talking-head synthesis.
We show that this disentangled representation leads to a significant improvement over previous methods.
arXiv Detail & Related papers (2021-04-29T17:59:42Z) - Beyond Fine-tuning: Classifying High Resolution Mammograms using
Function-Preserving Transformations [32.40975574666405]
The task of classifying mammograms is very challenging because the lesion is usually small in the high resolution image.
In this paper, we propose to go beyond fine-tuning by introducing a novel framework called MorphHR.
The proposed framework is to integrate function-preserving transformations, for any continuous non-linear activation neurons, to internally regularise the network for improving mammograms classification.
arXiv Detail & Related papers (2021-01-20T03:04:07Z) - A Novel Local Binary Pattern Based Blind Feature Image Steganography [12.970738540611855]
A novel feature based blind image steganography technique is proposed, which preserves the LBP (Local binary pattern) feature of the cover with comparable embedding rates.
The proposed scheme computes the local binary pattern to hide the bits of the secret image in such a way that the local relationship that exists in the cover are preserved in the resulting stego image.
arXiv Detail & Related papers (2021-01-16T06:37:00Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
We present a novel method for the unsupervised domain adaptation for histological image analysis.
It is based on a backbone for embedding images into a feature space, and a graph neural layer for propa-gating the supervision signals of images with labels.
In experiments, our methodachieves state-of-the-art performance on four public datasets.
arXiv Detail & Related papers (2020-08-21T04:53:44Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
Group-based image restoration methods are more effective in gathering the similarity among patches.
For each patch, we find and group the most similar patches within a searching window.
The proposed method is superior to other current state-of-the-art denoising methods in both subjective and objective criterion.
arXiv Detail & Related papers (2020-08-09T15:12:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.