Human-Agent Coordination in Games under Incomplete Information via Multi-Step Intent
- URL: http://arxiv.org/abs/2410.18242v1
- Date: Wed, 23 Oct 2024 19:37:19 GMT
- Title: Human-Agent Coordination in Games under Incomplete Information via Multi-Step Intent
- Authors: Shenghui Chen, Ruihan Zhao, Sandeep Chinchali, Ufuk Topcu,
- Abstract summary: Strategic coordination between autonomous agents and human partners can be modeled as turn-based cooperative games.
We extend a turn-based game under incomplete information to allow players to take multiple actions per turn rather than a single action.
- Score: 21.170542003568674
- License:
- Abstract: Strategic coordination between autonomous agents and human partners under incomplete information can be modeled as turn-based cooperative games. We extend a turn-based game under incomplete information, the shared-control game, to allow players to take multiple actions per turn rather than a single action. The extension enables the use of multi-step intent, which we hypothesize will improve performance in long-horizon tasks. To synthesize cooperative policies for the agent in this extended game, we propose an approach featuring a memory module for a running probabilistic belief of the environment dynamics and an online planning algorithm called IntentMCTS. This algorithm strategically selects the next action by leveraging any communicated multi-step intent via reward augmentation while considering the current belief. Agent-to-agent simulations in the Gnomes at Night testbed demonstrate that IntentMCTS requires fewer steps and control switches than baseline methods. A human-agent user study corroborates these findings, showing an 18.52% higher success rate compared to the heuristic baseline and a 5.56% improvement over the single-step prior work. Participants also report lower cognitive load, frustration, and higher satisfaction with the IntentMCTS agent partner.
Related papers
- Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - A Hierarchical Game-Theoretic Decision-Making for Cooperative
Multi-Agent Systems Under the Presence of Adversarial Agents [1.52292571922932]
Underlying relationships among Multi-Agent Systems (MAS) in hazardous scenarios can be represented as Game-theoretic models.
This paper proposes a new hierarchical network-based model called Game-theoretic Utility Tree (GUT)
It decomposes high-level strategies into executable low-level actions for cooperative MAS decisions.
arXiv Detail & Related papers (2023-03-28T15:16:23Z) - Learning cooperative behaviours in adversarial multi-agent systems [2.355408272992293]
This work extends an existing virtual multi-agent platform called RoboSumo to create TripleSumo.
We investigate a scenario in which two agents, namely Bug' and Ant', must team up and push another agent Spider' out of the arena.
To tackle this goal, the newly added agent Bug' is trained during an ongoing match between Ant' and Spider'
arXiv Detail & Related papers (2023-02-10T22:12:29Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Off-Beat Multi-Agent Reinforcement Learning [62.833358249873704]
We investigate model-free multi-agent reinforcement learning (MARL) in environments where off-beat actions are prevalent.
We propose a novel episodic memory, LeGEM, for model-free MARL algorithms.
We evaluate LeGEM on various multi-agent scenarios with off-beat actions, including Stag-Hunter Game, Quarry Game, Afforestation Game, and StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2022-05-27T02:21:04Z) - On-the-fly Strategy Adaptation for ad-hoc Agent Coordination [21.029009561094725]
Training agents in cooperative settings offers the promise of AI agents able to interact effectively with humans (and other agents) in the real world.
The vast majority of focus has been on the self-play paradigm.
This paper proposes to solve this problem by adapting agent strategies on the fly, using a posterior belief over the other agents' strategy.
arXiv Detail & Related papers (2022-03-08T02:18:11Z) - Any-Play: An Intrinsic Augmentation for Zero-Shot Coordination [0.4153433779716327]
We formalize an alternative criteria for evaluating cooperative AI, referred to as inter-algorithm cross-play.
We show that existing state-of-the-art cooperative AI algorithms, such as Other-Play and Off-Belief Learning, under-perform in this paradigm.
We propose the Any-Play learning augmentation for generalizing self-play-based algorithms to the inter-algorithm cross-play setting.
arXiv Detail & Related papers (2022-01-28T21:43:58Z) - Conditional Imitation Learning for Multi-Agent Games [89.897635970366]
We study the problem of conditional multi-agent imitation learning, where we have access to joint trajectory demonstrations at training time.
We propose a novel approach to address the difficulties of scalability and data scarcity.
Our model learns a low-rank subspace over ego and partner agent strategies, then infers and adapts to a new partner strategy by interpolating in the subspace.
arXiv Detail & Related papers (2022-01-05T04:40:13Z) - A Cordial Sync: Going Beyond Marginal Policies for Multi-Agent Embodied
Tasks [111.34055449929487]
We introduce the novel task FurnMove in which agents work together to move a piece of furniture through a living room to a goal.
Unlike existing tasks, FurnMove requires agents to coordinate at every timestep.
We identify two challenges when training agents to complete FurnMove: existing decentralized action sampling procedures do not permit expressive joint action policies.
Using SYNC-policies and CORDIAL, our agents achieve a 58% completion rate on FurnMove, an impressive absolute gain of 25 percentage points over competitive decentralized baselines.
arXiv Detail & Related papers (2020-07-09T17:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.