Faster Algorithms for User-Level Private Stochastic Convex Optimization
- URL: http://arxiv.org/abs/2410.18391v1
- Date: Thu, 24 Oct 2024 03:02:33 GMT
- Title: Faster Algorithms for User-Level Private Stochastic Convex Optimization
- Authors: Andrew Lowy, Daogao Liu, Hilal Asi,
- Abstract summary: We study private convex optimization (SCO) under user-level differential privacy constraints.
Existing algorithms for user-level DP SCO are impractical in many large-scale machine learning scenarios.
We provide novel user-level DP algorithms with state-of-the-art excess risk and runtime guarantees.
- Score: 16.59551503680919
- License:
- Abstract: We study private stochastic convex optimization (SCO) under user-level differential privacy (DP) constraints. In this setting, there are $n$ users (e.g., cell phones), each possessing $m$ data items (e.g., text messages), and we need to protect the privacy of each user's entire collection of data items. Existing algorithms for user-level DP SCO are impractical in many large-scale machine learning scenarios because: (i) they make restrictive assumptions on the smoothness parameter of the loss function and require the number of users to grow polynomially with the dimension of the parameter space; or (ii) they are prohibitively slow, requiring at least $(mn)^{3/2}$ gradient computations for smooth losses and $(mn)^3$ computations for non-smooth losses. To address these limitations, we provide novel user-level DP algorithms with state-of-the-art excess risk and runtime guarantees, without stringent assumptions. First, we develop a linear-time algorithm with state-of-the-art excess risk (for a non-trivial linear-time algorithm) under a mild smoothness assumption. Our second algorithm applies to arbitrary smooth losses and achieves optimal excess risk in $\approx (mn)^{9/8}$ gradient computations. Third, for non-smooth loss functions, we obtain optimal excess risk in $n^{11/8} m^{5/4}$ gradient computations. Moreover, our algorithms do not require the number of users to grow polynomially with the dimension.
Related papers
- Efficient Sparse Least Absolute Deviation Regression with Differential
Privacy [10.414082115202003]
We develop a fast privacy-preserving learning solution for a sparse robust regression problem.
Our algorithm achieves a fast estimation by reformulating the sparse LAD problem as a penalized least square estimation problem.
We show that our algorithm can achieve better privacy and statistical accuracy trade-off compared with the state-of-the-art privacy-preserving regression algorithms.
arXiv Detail & Related papers (2024-01-02T17:13:34Z) - User-level Differentially Private Stochastic Convex Optimization:
Efficient Algorithms with Optimal Rates [16.958088684785668]
We develop new algorithms for user-level DP-SCO that obtain optimal rates for both convex and strongly convex functions in runtime time.
Our algorithms are the first to obtain optimal rates for non-smooth functions in time.
arXiv Detail & Related papers (2023-11-07T08:26:51Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
We consider learning in an adversarial Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes.
This paper provides two algorithms that improve the regret to $tildemathcal O(K2/3)$ in the same setting.
arXiv Detail & Related papers (2023-01-30T14:37:21Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - Non-Euclidean Differentially Private Stochastic Convex Optimization [15.302167005107135]
We show that noisy gradient descent (SGD) algorithms attain the optimal excess risk in low-dimensional regimes.
Our work draws upon concepts from the geometry of normed spaces, such as the notions of regularity, uniform convexity, and uniform smoothness.
arXiv Detail & Related papers (2021-03-01T19:48:44Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
We prove that our algorithms require a number of evaluations gradient independent of training set size and number of parameters.
Experiments on MNIST and ImageNet confirm the theoretical scaling of our algorithms, which are 9--36 times more efficient than full-batch methods.
arXiv Detail & Related papers (2020-10-12T17:41:44Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.