Infinity-MM: Scaling Multimodal Performance with Large-Scale and High-Quality Instruction Data
- URL: http://arxiv.org/abs/2410.18558v2
- Date: Mon, 06 Jan 2025 12:48:47 GMT
- Title: Infinity-MM: Scaling Multimodal Performance with Large-Scale and High-Quality Instruction Data
- Authors: Shuhao Gu, Jialing Zhang, Siyuan Zhou, Kevin Yu, Zhaohu Xing, Liangdong Wang, Zhou Cao, Jintao Jia, Zhuoyi Zhang, Yixuan Wang, Zhenchong Hu, Bo-Wen Zhang, Jijie Li, Dong Liang, Yingli Zhao, Songjing Wang, Yulong Ao, Yiming Ju, Huanhuan Ma, Xiaotong Li, Haiwen Diao, Yufeng Cui, Xinlong Wang, Yaoqi Liu, Fangxiang Feng, Guang Liu,
- Abstract summary: We introduce Infinity-MM, a large-scale multimodal instruction dataset.
We perform unified preprocessing, resulting in a dataset with over 40 million samples that ensures diversity and accuracy.
We propose a synthetic instruction generation method based on a tagging system and open-source Vision-Language Models.
- Score: 35.85909368345219
- License:
- Abstract: Recently, Vision-Language Models (VLMs) have achieved remarkable progress in multimodal tasks, and multimodal instruction data serves as the foundation for enhancing VLM capabilities. Despite the availability of several open-source multimodal datasets, limitations in the scale and quality of open-source instruction data hinder the performance of VLMs trained on these datasets, leading to a significant gap compared to models trained on closed-source data. To address this challenge, we introduce Infinity-MM, a large-scale multimodal instruction dataset. We collected the available multimodal instruction datasets and performed unified preprocessing, resulting in a dataset with over 40 million samples that ensures diversity and accuracy. Furthermore, to enable large-scale expansion of instruction data and support the continuous acquisition of high-quality data, we propose a synthetic instruction generation method based on a tagging system and open-source VLMs. By establishing correspondences between different types of images and associated instruction types, this method can provide essential guidance during data synthesis. Leveraging this high-quality data, we have trained a 2-billion-parameter Vision-Language Model, Aquila-VL-2B, which achieves state-of-the-art (SOTA) performance among models of similar scale. The data is available at: https://huggingface.co/datasets/BAAI/Infinity-MM.
Related papers
- Scalable Vision Language Model Training via High Quality Data Curation [10.121967684111445]
We introduce an open-source vision language model (VLM) series achieving state-of-the-art (SOTA) performance in 2B and 8B parameters.
The following three key improvements contribute to SAILVL's leading performance.
arXiv Detail & Related papers (2025-01-10T13:27:04Z) - MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval [32.593177371090306]
MegaPairs is a novel data synthesis method that leverages vision language models (VLMs) and open-domain images.
Our empirical analysis shows that MegaPairs generates high-quality data, enabling the multimodal retriever to significantly outperform the baseline model.
We produce more than 26 million training instances and trained several models of varying sizes using this data.
arXiv Detail & Related papers (2024-12-19T02:49:55Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.
MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.
Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - Genixer: Empowering Multimodal Large Language Models as a Powerful Data Generator [63.762209407570715]
Genixer is a comprehensive data generation pipeline consisting of four key steps.
A synthetic VQA-like dataset trained with LLaVA1.5 enhances performance on 10 out of 12 multimodal benchmarks.
MLLMs trained with task-specific datasets can surpass GPT-4V in generating complex instruction tuning data.
arXiv Detail & Related papers (2023-12-11T09:44:41Z) - Reformulating Vision-Language Foundation Models and Datasets Towards
Universal Multimodal Assistants [65.47222691674074]
Muffin framework employs pre-trained vision-language models to act as providers of visual signals.
UniMM-Chat dataset explores the complementarities of datasets to generate 1.1M high-quality and diverse multimodal instructions.
arXiv Detail & Related papers (2023-10-01T12:35:18Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.