Understanding Players as if They Are Talking to the Game in a Customized Language: A Pilot Study
- URL: http://arxiv.org/abs/2410.18605v1
- Date: Thu, 24 Oct 2024 09:59:10 GMT
- Title: Understanding Players as if They Are Talking to the Game in a Customized Language: A Pilot Study
- Authors: Tianze Wang, Maryam Honari-Jahromi, Styliani Katsarou, Olga Mikheeva, Theodoros Panagiotakopoulos, Oleg Smirnov, Lele Cao, Sahar Asadi,
- Abstract summary: This pilot study explores the application of language models (LMs) to model game event sequences.
We transform raw event data into textual sequences and pretraining a Longformer model on this data.
The results demonstrate the potential of self-supervised LMs in enhancing game design and personalization without relying on ground-truth labels.
- Score: 3.4333699338998693
- License:
- Abstract: This pilot study explores the application of language models (LMs) to model game event sequences, treating them as a customized natural language. We investigate a popular mobile game, transforming raw event data into textual sequences and pretraining a Longformer model on this data. Our approach captures the rich and nuanced interactions within game sessions, effectively identifying meaningful player segments. The results demonstrate the potential of self-supervised LMs in enhancing game design and personalization without relying on ground-truth labels.
Related papers
- AMONGAGENTS: Evaluating Large Language Models in the Interactive Text-Based Social Deduction Game [12.384945632524424]
This paper focuses on creating proxies of human behavior in simulated environments, with Among Us utilized as a tool for studying simulated human behavior.
Our work demonstrates that state-of-the-art large language models (LLMs) can effectively grasp the game rules and make decisions based on the current context.
arXiv Detail & Related papers (2024-07-23T14:34:38Z) - player2vec: A Language Modeling Approach to Understand Player Behavior in Games [2.2216044069240657]
Methods for learning latent user representations from historical behavior logs have gained traction for recommendation tasks in e-commerce, content streaming, and other settings.
We present a novel method for overcoming this limitation by extending a long-range Transformer model to player behavior data.
We discuss specifics of behavior tracking in games and propose preprocessing and tokenization approaches by viewing in-game events in an analogous way to words in sentences.
arXiv Detail & Related papers (2024-04-05T17:29:47Z) - Instruction-Driven Game Engines on Large Language Models [59.280666591243154]
The IDGE project aims to democratize game development by enabling a large language model to follow free-form game rules.
We train the IDGE in a curriculum manner that progressively increases the model's exposure to complex scenarios.
Our initial progress lies in developing an IDGE for Poker, a universally cherished card game.
arXiv Detail & Related papers (2024-03-30T08:02:16Z) - Visually Grounded Language Learning: a review of language games,
datasets, tasks, and models [60.2604624857992]
Many Vision+Language (V+L) tasks have been defined with the aim of creating models that can ground symbols in the visual modality.
In this work, we provide a systematic literature review of several tasks and models proposed in the V+L field.
arXiv Detail & Related papers (2023-12-05T02:17:29Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
We present a Promptable Game Model (PGM) for neural video game simulators.
It allows a user to play the game by prompting it with high- and low-level action sequences.
Most captivatingly, our PGM unlocks the director's mode, where the game is played by specifying goals for the agents in the form of a prompt.
Our method significantly outperforms existing neural video game simulators in terms of rendering quality and unlocks applications beyond the capabilities of the current state of the art.
arXiv Detail & Related papers (2023-03-23T17:43:17Z) - Infusing Commonsense World Models with Graph Knowledge [89.27044249858332]
We study the setting of generating narratives in an open world text adventure game.
A graph representation of the underlying game state can be used to train models that consume and output both grounded graph representations and natural language descriptions and actions.
arXiv Detail & Related papers (2023-01-13T19:58:27Z) - Learning Chess Blindfolded: Evaluating Language Models on State Tracking [69.3794549747725]
We consider the task of language modeling for the game of chess.
Unlike natural language, chess notations describe a simple, constrained, and deterministic domain.
We find that transformer language models can learn to track pieces and predict legal moves with high accuracy when trained solely on move sequences.
arXiv Detail & Related papers (2021-02-26T01:16:23Z) - Individualized Context-Aware Tensor Factorization for Online Games
Predictions [6.602875221541352]
We present the Neural Individualized Context-aware Embeddings (NICE) model for predicting user performance and game outcomes.
Our proposed method identifies individual behavioral differences in different contexts by learning latent representations of users and contexts.
Using a dataset from the MOBA game League of Legends, we demonstrate that our model substantially improves the prediction of winning outcome, individual user performance, and user engagement.
arXiv Detail & Related papers (2021-02-22T20:46:02Z) - Keep CALM and Explore: Language Models for Action Generation in
Text-based Games [27.00685301984832]
We propose the Contextual Action Language Model (CALM) to generate a compact set of action candidates at each game state.
We combine CALM with a reinforcement learning agent which re-ranks the generated action candidates to maximize in-game rewards.
arXiv Detail & Related papers (2020-10-06T17:36:29Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
This work presents an exploration and imitation-learning-based agent capable of state-of-the-art performance in playing text-based computer games.
Text-based computer games describe their world to the player through natural language and expect the player to interact with the game using text.
These games are of interest as they can be seen as a testbed for language understanding, problem-solving, and language generation by artificial agents.
arXiv Detail & Related papers (2020-01-24T03:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.