Enhancing pretraining efficiency for medical image segmentation via transferability metrics
- URL: http://arxiv.org/abs/2410.18677v1
- Date: Thu, 24 Oct 2024 12:11:52 GMT
- Title: Enhancing pretraining efficiency for medical image segmentation via transferability metrics
- Authors: Gábor Hidy, Bence Bakos, András Lukács,
- Abstract summary: In medical image segmentation tasks, the scarcity of labeled training data poses a significant challenge.
We introduce a novel transferability metric, based on contrastive learning, that measures how robustly a pretrained model is able to represent the target data.
- Score: 0.0
- License:
- Abstract: In medical image segmentation tasks, the scarcity of labeled training data poses a significant challenge when training deep neural networks. When using U-Net-style architectures, it is common practice to address this problem by pretraining the encoder part on a large general-purpose dataset like ImageNet. However, these methods are resource-intensive and do not guarantee improved performance on the downstream task. In this paper we investigate a variety of training setups on medical image segmentation datasets, using ImageNet-pretrained models. By examining over 300 combinations of models, datasets, and training methods, we find that shorter pretraining often leads to better results on the downstream task, providing additional proof to the well-known fact that the accuracy of the model on ImageNet is a poor indicator for downstream performance. As our main contribution, we introduce a novel transferability metric, based on contrastive learning, that measures how robustly a pretrained model is able to represent the target data. In contrast to other transferability scores, our method is applicable to the case of transferring from ImageNet classification to medical image segmentation. We apply our robustness score by measuring it throughout the pretraining phase to indicate when the model weights are optimal for downstream transfer. This reduces pretraining time and improves results on the target task.
Related papers
- Self-Supervised Pre-Training with Contrastive and Masked Autoencoder
Methods for Dealing with Small Datasets in Deep Learning for Medical Imaging [8.34398674359296]
Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis.
Training such deep learning models requires large and accurate datasets, with annotations for all training samples.
To address this challenge, deep learning models can be pre-trained on large image datasets without annotations using methods from the field of self-supervised learning.
arXiv Detail & Related papers (2023-08-12T11:31:01Z) - Optimal transfer protocol by incremental layer defrosting [66.76153955485584]
Transfer learning is a powerful tool enabling model training with limited amounts of data.
The simplest transfer learning protocol is based on freezing" the feature-extractor layers of a network pre-trained on a data-rich source task.
We show that this protocol is often sub-optimal and the largest performance gain may be achieved when smaller portions of the pre-trained network are kept frozen.
arXiv Detail & Related papers (2023-03-02T17:32:11Z) - The Role of Pre-training Data in Transfer Learning [20.768366728182997]
We investigate the impact of pre-training data distribution on the few-shot and full fine-tuning performance.
We find that the choice of the pre-training data source is essential for the few-shot transfer, but its role decreases as more data is made available for fine-tuning.
arXiv Detail & Related papers (2023-02-27T09:10:08Z) - Self-Supervised Pretraining for 2D Medical Image Segmentation [0.0]
Self-supervised learning offers a way to lower the need for manually annotated data by pretraining models for a specific domain on unlabelled data.
We find that self-supervised pretraining on natural images and target-domain-specific images leads to the fastest and most stable downstream convergence.
In low-data scenarios, supervised ImageNet pretraining achieves the best accuracy, requiring less than 100 annotated samples to realise close to minimal error.
arXiv Detail & Related papers (2022-09-01T09:25:22Z) - Are Large-scale Datasets Necessary for Self-Supervised Pre-training? [29.49873710927313]
We consider a self-supervised pre-training scenario that only leverages the target task data.
Our study shows that denoising autoencoders, such as BEiT, are more robust to the type and size of the pre-training data.
On COCO, when pre-training solely using COCO images, the detection and instance segmentation performance surpasses the supervised ImageNet pre-training in a comparable setting.
arXiv Detail & Related papers (2021-12-20T18:41:32Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Efficient Conditional Pre-training for Transfer Learning [71.01129334495553]
We propose efficient filtering methods to select relevant subsets from the pre-training dataset.
We validate our techniques by pre-training on ImageNet in both the unsupervised and supervised settings.
We improve standard ImageNet pre-training by 1-3% by tuning available models on our subsets and pre-training on a dataset filtered from a larger scale dataset.
arXiv Detail & Related papers (2020-11-20T06:16:15Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z) - Multi-task pre-training of deep neural networks for digital pathology [8.74883469030132]
We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images.
We show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance.
arXiv Detail & Related papers (2020-05-05T08:50:17Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
We show that we can obtain state-of-the-art results using a semi-supervised approach, specifically a self-training paradigm.
We first train a teacher model on labeled data, and then generate pseudo labels on a large set of unlabeled data.
Our robust training framework can digest human-annotated and pseudo labels jointly and achieve top performances on Cityscapes, CamVid and KITTI datasets.
arXiv Detail & Related papers (2020-04-30T17:09:17Z) - Cheaper Pre-training Lunch: An Efficient Paradigm for Object Detection [86.0580214485104]
We propose a general and efficient pre-training paradigm, Montage pre-training, for object detection.
Montage pre-training needs only the target detection dataset while taking only 1/4 computational resources compared to the widely adopted ImageNet pre-training.
The efficiency and effectiveness of Montage pre-training are validated by extensive experiments on the MS-COCO dataset.
arXiv Detail & Related papers (2020-04-25T16:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.