Low-Latency Video Anonymization for Crowd Anomaly Detection: Privacy vs. Performance
- URL: http://arxiv.org/abs/2410.18717v1
- Date: Thu, 24 Oct 2024 13:22:33 GMT
- Title: Low-Latency Video Anonymization for Crowd Anomaly Detection: Privacy vs. Performance
- Authors: Mulugeta Weldezgina Asres, Lei Jiao, Christian Walter Omlin,
- Abstract summary: This study revisits conventional anonymization solutions for privacy protection and real-time video anomaly detection applications.
We propose a novel lightweight adaptive anonymization for VAD (LA3D) that employs dynamic adjustment to enhance privacy protection.
Our experiment demonstrates that LA3D enables substantial improvement in the privacy anonymization capability without majorly degrading VAD efficacy.
- Score: 5.78828936452823
- License:
- Abstract: Recent advancements in artificial intelligence promise ample potential in monitoring applications with surveillance cameras. However, concerns about privacy and model bias have made it challenging to utilize them in public. Although de-identification approaches have been proposed in the literature, aiming to achieve a certain level of anonymization, most of them employ deep learning models that are computationally demanding for real-time edge deployment. In this study, we revisit conventional anonymization solutions for privacy protection and real-time video anomaly detection (VAD) applications. We propose a novel lightweight adaptive anonymization for VAD (LA3D) that employs dynamic adjustment to enhance privacy protection. We evaluated the approaches on publicly available privacy and VAD data sets to examine the strengths and weaknesses of the different anonymization techniques and highlight the promising efficacy of our approach. Our experiment demonstrates that LA3D enables substantial improvement in the privacy anonymization capability without majorly degrading VAD efficacy.
Related papers
- Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Large Language Models are Advanced Anonymizers [13.900633576526863]
We show how adversarial anonymization outperforms current industry-grade anonymizers in terms of the resulting utility and privacy.
We first present a new setting for evaluating anonymizations in the face of adversarial LLMs inferences.
arXiv Detail & Related papers (2024-02-21T14:44:00Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - TeD-SPAD: Temporal Distinctiveness for Self-supervised
Privacy-preservation for video Anomaly Detection [59.04634695294402]
Video anomaly detection (VAD) without human monitoring is a complex computer vision task.
Privacy leakage in VAD allows models to pick up and amplify unnecessary biases related to people's personal information.
We propose TeD-SPAD, a privacy-aware video anomaly detection framework that destroys visual private information in a self-supervised manner.
arXiv Detail & Related papers (2023-08-21T22:42:55Z) - Learnable Privacy-Preserving Anonymization for Pedestrian Images [27.178354411900127]
This paper studies a novel privacy-preserving anonymization problem for pedestrian images.
It preserves personal identity information (PII) for authorized models and prevents PII from being recognized by third parties.
We propose a joint learning reversible anonymization framework, which can reversibly generate full-body anonymous images.
arXiv Detail & Related papers (2022-07-24T07:04:16Z) - PrivHAR: Recognizing Human Actions From Privacy-preserving Lens [58.23806385216332]
We propose an optimizing framework to provide robust visual privacy protection along the human action recognition pipeline.
Our framework parameterizes the camera lens to successfully degrade the quality of the videos to inhibit privacy attributes and protect against adversarial attacks.
arXiv Detail & Related papers (2022-06-08T13:43:29Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
Existing approaches for mitigating privacy leakage in action recognition require privacy labels along with the action labels from the video dataset.
Recent developments of self-supervised learning (SSL) have unleashed the untapped potential of the unlabeled data.
We present a novel training framework which removes privacy information from input video in a self-supervised manner without requiring privacy labels.
arXiv Detail & Related papers (2022-03-29T02:56:40Z) - CIAGAN: Conditional Identity Anonymization Generative Adversarial
Networks [12.20367903755194]
CIAGAN is a model for image and video anonymization based on conditional generative adversarial networks.
Our model is able to remove the identifying characteristics of faces and bodies while producing high-quality images and videos.
arXiv Detail & Related papers (2020-05-19T15:56:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.