Why Does the Effective Context Length of LLMs Fall Short?
- URL: http://arxiv.org/abs/2410.18745v1
- Date: Thu, 24 Oct 2024 13:51:50 GMT
- Title: Why Does the Effective Context Length of LLMs Fall Short?
- Authors: Chenxin An, Jun Zhang, Ming Zhong, Lei Li, Shansan Gong, Yao Luo, Jingjing Xu, Lingpeng Kong,
- Abstract summary: In this work, we introduce ShifTed Rotray position embeddING (STRING)
STRING shifts well-trained positions to overwrite the original ineffective positions during inference, enhancing performance within their existing training lengths.
Experimental results show that STRING dramatically improves the performance of the latest large-scale models.
- Score: 68.34573617977013
- License:
- Abstract: Advancements in distributed training and efficient attention mechanisms have significantly expanded the context window sizes of large language models (LLMs). However, recent work reveals that the effective context lengths of open-source LLMs often fall short, typically not exceeding half of their training lengths. In this work, we attribute this limitation to the left-skewed frequency distribution of relative positions formed in LLMs pretraining and post-training stages, which impedes their ability to effectively gather distant information. To address this challenge, we introduce ShifTed Rotray position embeddING (STRING). STRING shifts well-trained positions to overwrite the original ineffective positions during inference, enhancing performance within their existing training lengths. Experimental results show that without additional training, STRING dramatically improves the performance of the latest large-scale models, such as Llama3.1 70B and Qwen2 72B, by over 10 points on popular long-context benchmarks RULER and InfiniteBench, establishing new state-of-the-art results for open-source LLMs. Compared to commercial models, Llama 3.1 70B with \method even achieves better performance than GPT-4-128K and clearly surpasses Claude 2 and Kimi-chat.
Related papers
- Untie the Knots: An Efficient Data Augmentation Strategy for Long-Context Pre-Training in Language Models [21.90388980448712]
Training models to handle long contexts presents significant challenges.
We introduce Untie the Knots (textbfUtK), a novel data augmentation strategy employed during the continue pre-training phase.
We conduct extensive experiments on models with 7B and 72B parameters, trained on 20 billion tokens, demonstrating that UtK achieves 75% and 84.5% accurracy on RULER at 128K context length.
arXiv Detail & Related papers (2024-09-07T09:28:55Z) - LongRecipe: Recipe for Efficient Long Context Generalization in Large Language Models [72.71150585370147]
LongRecipe is an efficient training strategy for extending the context window of large language models.
It simulates long-sequence inputs while maintaining training efficiency and significantly improves the model's understanding of long-range dependencies.
LongRecipe can utilize long sequences while requiring only 30% of the target context window size, and reduces computational training resource over 85% compared to full sequence training.
arXiv Detail & Related papers (2024-08-31T17:19:30Z) - Efficient Continual Pre-training by Mitigating the Stability Gap [68.49269649759005]
We study the behavior of Large Language Models (LLMs) during continual pre-training.
We propose three effective strategies to enhance LLM performance within a fixed compute budget.
Our strategies improve the average medical task performance of the OpenLlama-3B model from 36.2% to 40.7% with only 40% of the original training budget.
arXiv Detail & Related papers (2024-06-21T02:28:37Z) - Extending LLMs' Context Window with 100 Samples [42.52554295241792]
Large Language Models (LLMs) are known to have limited extrapolation ability beyond their pre-trained context window.
Recent studies have sought to extend the context window by modifying rotary position embedding (RoPE)
We introduce a novel extension to RoPE which combines adjusting RoPE's base frequency and scaling the attention logits to help LLMs efficiently adapt to a larger context window.
arXiv Detail & Related papers (2024-01-13T07:57:01Z) - EE-LLM: Large-Scale Training and Inference of Early-Exit Large Language Models with 3D Parallelism [70.07661254213181]
We present EE-LLM, a framework for large-scale training and inference of early-exit large language models (LLMs)
Built upon Megatron-LM, EE-LLM implements a variety of algorithmic innovations and performance optimizations tailored to early exiting.
Our analytical and empirical study shows that EE-LLM achieves great training efficiency with negligible computational overhead.
arXiv Detail & Related papers (2023-12-08T09:31:50Z) - CLEX: Continuous Length Extrapolation for Large Language Models [68.43814043853347]
We propose Continuous Length EXtrapolation (CLEX) for Large Language Models (LLMs)
CLEX extends the context window to over 4x or almost 8x training length, with no deterioration in performance.
Our model trained on a 4k length exhibits competitive performance against state-of-the-art open-source models trained on context lengths up to 32k.
arXiv Detail & Related papers (2023-10-25T08:13:02Z) - GrowLength: Accelerating LLMs Pretraining by Progressively Growing
Training Length [65.24730341801468]
This paper introduces a novel, simple, and effective method named growlength'' to accelerate the pretraining process of Large Language Models.
Our method progressively increases the training length throughout the pretraining phase, thereby mitigating computational costs and enhancing efficiency.
arXiv Detail & Related papers (2023-10-01T05:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.