WARP-LCA: Efficient Convolutional Sparse Coding with Locally Competitive Algorithm
- URL: http://arxiv.org/abs/2410.18794v1
- Date: Thu, 24 Oct 2024 14:47:36 GMT
- Title: WARP-LCA: Efficient Convolutional Sparse Coding with Locally Competitive Algorithm
- Authors: Geoffrey Kasenbacher, Felix Ehret, Gerrit Ecke, Sebastian Otte,
- Abstract summary: We show that WARP-LCA converges faster by orders of magnitude and reaches better minima compared to conventional LCA.
We demonstrate that WARP-LCA exhibits superior properties in terms of reconstruction and denoising quality as well as robustness when applied in deep recognition pipelines.
- Score: 1.4186974630564675
- License:
- Abstract: The locally competitive algorithm (LCA) can solve sparse coding problems across a wide range of use cases. Recently, convolution-based LCA approaches have been shown to be highly effective for enhancing robustness for image recognition tasks in vision pipelines. To additionally maximize representational sparsity, LCA with hard-thresholding can be applied. While this combination often yields very good solutions satisfying an $\ell_0$ sparsity criterion, it comes with significant drawbacks for practical application: (i) LCA is very inefficient, typically requiring hundreds of optimization cycles for convergence; (ii) the use of hard-thresholding results in a non-convex loss function, which might lead to suboptimal minima. To address these issues, we propose the Locally Competitive Algorithm with State Warm-up via Predictive Priming (WARP-LCA), which leverages a predictor network to provide a suitable initial guess of the LCA state based on the current input. Our approach significantly improves both convergence speed and the quality of solutions, while maintaining and even enhancing the overall strengths of LCA. We demonstrate that WARP-LCA converges faster by orders of magnitude and reaches better minima compared to conventional LCA. Moreover, the learned representations are more sparse and exhibit superior properties in terms of reconstruction and denoising quality as well as robustness when applied in deep recognition pipelines. Furthermore, we apply WARP-LCA to image denoising tasks, showcasing its robustness and practical effectiveness. Our findings confirm that the naive use of LCA with hard-thresholding results in suboptimal minima, whereas initializing LCA with a predictive guess results in better outcomes. This research advances the field of biologically inspired deep learning by providing a novel approach to convolutional sparse coding.
Related papers
- Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - A Single-Loop Deep Actor-Critic Algorithm for Constrained Reinforcement Learning with Provable Convergence [7.586600116278698]
Deep Actor-Critic network (DNN) combine Actor-Critic network (DNN) and deep neural network (DNN)
Deep Actor-Critic network (DNN) combine Actor-Critic network (DNN) and deep neural network (DNN)
Deep Actor-Critic network (DNN) combine Actor-Critic network (DNN) and deep neural network (DNN)
Deep Actor-Critic network (DNN) combine Actor-Critic network (DNN) and deep neural network (DNN)
Deep Actor-Critic network (DNN)
arXiv Detail & Related papers (2023-06-10T10:04:54Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
The area under the ROC curve (AUC) is one of the most widely used performance measures for classification models in machine learning.
We develop an efficient approximated gradient descent method based on recent practical envelope smoothing technique.
Our proposed algorithm can also be used to minimize the sum of some ranked range loss, which also lacks efficient solvers.
arXiv Detail & Related papers (2022-03-03T03:46:18Z) - Back to Basics: Efficient Network Compression via IMP [22.586474627159287]
Iterative Magnitude Pruning (IMP) is one of the most established approaches for network pruning.
IMP is often argued that it reaches suboptimal states by not incorporating sparsification into the training phase.
We find that IMP with SLR for retraining can outperform state-of-the-art pruning-during-training approaches.
arXiv Detail & Related papers (2021-11-01T11:23:44Z) - Learned Robust PCA: A Scalable Deep Unfolding Approach for
High-Dimensional Outlier Detection [23.687598836093333]
Robust principal component analysis is a critical tool in machine learning, which detects outliers in the task of low-rank reconstruction.
In this paper, we propose a scalable and learnable approach for high-dimensional RPCA problems which we call LRPCA.
We show that LRPCA outperforms the state-of-the-art RPCA algorithms, such as neurald AltProj, on both datasets real-world applications.
arXiv Detail & Related papers (2021-10-11T23:37:55Z) - Adaptive Approach For Sparse Representations Using The Locally
Competitive Algorithm For Audio [5.6394515393964575]
This paper presents an adaptive approach to optimize the gammachirp's parameters.
The proposed method consists of taking advantage of the LCA's neural architecture to automatically adapt the gammachirp's filterbank.
Results demonstrate an improvement in the LCA's performance with our approach in terms of sparsity, reconstruction quality, and convergence time.
arXiv Detail & Related papers (2021-09-29T20:26:16Z) - Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality [131.45028999325797]
We develop a doubly robust off-policy AC (DR-Off-PAC) for discounted MDP.
DR-Off-PAC adopts a single timescale structure, in which both actor and critics are updated simultaneously with constant stepsize.
We study the finite-time convergence rate and characterize the sample complexity for DR-Off-PAC to attain an $epsilon$-accurate optimal policy.
arXiv Detail & Related papers (2021-02-23T18:56:13Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
Principal component analysis (PCA) is a widely used dimension reduction technique in machine learning and statistics.
Various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis.
We present thresholding as a provably accurate, time, approximation algorithm for the SPCA problem.
arXiv Detail & Related papers (2020-06-23T04:25:36Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.