ConceptDrift: Uncovering Biases through the Lens of Foundational Models
- URL: http://arxiv.org/abs/2410.18970v1
- Date: Thu, 24 Oct 2024 17:59:16 GMT
- Title: ConceptDrift: Uncovering Biases through the Lens of Foundational Models
- Authors: Cristian Daniel Păduraru, Antonio Bărbălau, Radu Filipescu, Andrei Liviu Nicolicioiu, Elena Burceanu,
- Abstract summary: We propose ConceptDrift, a method which analyzes the weights of a linear probe, learned on top a foundational model.
We empirically prove the efficacy of our method, by significantly improving zero-shot performance with biased-augmented prompting.
- Score: 5.025665239455297
- License:
- Abstract: Datasets and pre-trained models come with intrinsic biases. Most methods rely on spotting them by analysing misclassified samples, in a semi-automated human-computer validation. In contrast, we propose ConceptDrift, a method which analyzes the weights of a linear probe, learned on top a foundational model. We capitalize on the weight update trajectory, which starts from the embedding of the textual representation of the class, and proceeds to drift towards embeddings that disclose hidden biases. Different from prior work, with this approach we can pin-point unwanted correlations from a dataset, providing more than just possible explanations for the wrong predictions. We empirically prove the efficacy of our method, by significantly improving zero-shot performance with biased-augmented prompting. Our method is not bounded to a single modality, and we experiment in this work with both image (Waterbirds, CelebA, Nico++) and text datasets (CivilComments).
Related papers
- CosFairNet:A Parameter-Space based Approach for Bias Free Learning [1.9116784879310025]
Deep neural networks trained on biased data often inadvertently learn unintended inference rules.
We introduce a novel approach to address bias directly in the model's parameter space, preventing its propagation across layers.
We show enhanced classification accuracy and debiasing effectiveness across various synthetic and real-world datasets.
arXiv Detail & Related papers (2024-10-19T13:06:40Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
We study bias arising from confounders in a causal graph for multimodal data.
Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data.
We use these features as confounder representations and use them via methods motivated by causal theory to remove bias from models.
arXiv Detail & Related papers (2023-11-28T16:46:14Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
We propose self-distillation as a regularization for a further pre-training stage.
We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks.
arXiv Detail & Related papers (2022-09-30T02:25:12Z) - Learn from Unpaired Data for Image Restoration: A Variational Bayes
Approach [18.007258270845107]
We propose LUD-VAE, a deep generative method to learn the joint probability density function from data sampled from marginal distributions.
We apply our method to real-world image denoising and super-resolution tasks and train the models using the synthetic data generated by the LUD-VAE.
arXiv Detail & Related papers (2022-04-21T13:27:17Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended task.
Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available.
We show a method for training models that learn to ignore these problematic correlations.
arXiv Detail & Related papers (2020-12-02T16:10:54Z) - Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles [66.15398165275926]
We propose a method that can automatically detect and ignore dataset-specific patterns, which we call dataset biases.
Our method trains a lower capacity model in an ensemble with a higher capacity model.
We show improvement in all settings, including a 10 point gain on the visual question answering dataset.
arXiv Detail & Related papers (2020-11-07T22:20:03Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
This paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases.
First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method.
The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features.
arXiv Detail & Related papers (2020-05-10T17:56:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.