Infogent: An Agent-Based Framework for Web Information Aggregation
- URL: http://arxiv.org/abs/2410.19054v1
- Date: Thu, 24 Oct 2024 18:01:28 GMT
- Title: Infogent: An Agent-Based Framework for Web Information Aggregation
- Authors: Revanth Gangi Reddy, Sagnik Mukherjee, Jeonghwan Kim, Zhenhailong Wang, Dilek Hakkani-Tur, Heng Ji,
- Abstract summary: We introduce Infogent, a novel framework for web information aggregation.
Experiments on different information access settings demonstrate Infogent beats an existing SOTA multi-agent search framework by 7%.
- Score: 59.67710556177564
- License:
- Abstract: Despite seemingly performant web agents on the task-completion benchmarks, most existing methods evaluate the agents based on a presupposition: the web navigation task consists of linear sequence of actions with an end state that marks task completion. In contrast, our work focuses on web navigation for information aggregation, wherein the agent must explore different websites to gather information for a complex query. We consider web information aggregation from two different perspectives: (i) Direct API-driven Access relies on a text-only view of the Web, leveraging external tools such as Google Search API to navigate the web and a scraper to extract website contents. (ii) Interactive Visual Access uses screenshots of the webpages and requires interaction with the browser to navigate and access information. Motivated by these diverse information access settings, we introduce Infogent, a novel modular framework for web information aggregation involving three distinct components: Navigator, Extractor and Aggregator. Experiments on different information access settings demonstrate Infogent beats an existing SOTA multi-agent search framework by 7% under Direct API-Driven Access on FRAMES, and improves over an existing information-seeking web agent by 4.3% under Interactive Visual Access on AssistantBench.
Related papers
- Beyond Browsing: API-Based Web Agents [58.39129004543844]
API-based agents outperform web browsing agents in experiments on WebArena.
Hybrid Agents out-perform both others nearly uniformly across tasks.
Results strongly suggest that when APIs are available, they present an attractive alternative to relying on web browsing alone.
arXiv Detail & Related papers (2024-10-21T19:46:06Z) - NaviQAte: Functionality-Guided Web Application Navigation [6.0759036120654315]
NaviQAte frames web application exploration as a question-and-answer task, generating action sequences for functionalities without requiring detailed parameters.
Our three-phase approach utilizes advanced large language models like GPT-4o for complex decision-making and cost-effective models, such as GPT-4o mini, for simpler tasks.
arXiv Detail & Related papers (2024-09-16T21:18:39Z) - WebQuest: A Benchmark for Multimodal QA on Web Page Sequences [10.008284460456107]
WebQuest is a multi-page question-answering dataset that requires reasoning across multiple web pages.
Our dataset evaluates information extraction, multimodal retrieval and composition of information from many web pages.
We evaluate leading proprietary multimodal models like GPT-4V, Gemini Flash, Claude 3, and open source models like InstructBLIP, PaliGemma on our dataset.
arXiv Detail & Related papers (2024-09-06T18:44:25Z) - Mobile-Agent-v2: Mobile Device Operation Assistant with Effective Navigation via Multi-Agent Collaboration [52.25473993987409]
We propose Mobile-Agent-v2, a multi-agent architecture for mobile device operation assistance.
The architecture comprises three agents: planning agent, decision agent, and reflection agent.
We show that Mobile-Agent-v2 achieves over a 30% improvement in task completion compared to the single-agent architecture.
arXiv Detail & Related papers (2024-06-03T05:50:00Z) - MS MARCO Web Search: a Large-scale Information-rich Web Dataset with Millions of Real Click Labels [95.48844474720798]
We introduce MS MARCO Web Search, the first large-scale information-rich web dataset.
This dataset mimics real-world web document and query distribution.
MS MARCO Web Search offers a retrieval benchmark with three web retrieval challenge tasks.
arXiv Detail & Related papers (2024-05-13T07:46:44Z) - AutoWebGLM: A Large Language Model-based Web Navigating Agent [33.55199326570078]
We develop the open AutoWebGLM based on ChatGLM3-6B.
Inspired by human browsing patterns, we first design an HTML simplification algorithm to represent webpages.
We then employ a hybrid human-AI method to build web browsing data for curriculum training.
arXiv Detail & Related papers (2024-04-04T17:58:40Z) - Dual-View Visual Contextualization for Web Navigation [36.41910428196889]
We propose to contextualize HTML elements through their "dual views" in webpage screenshots.
We build upon the insight -- web developers tend to arrange task-related elements nearby on webpages to enhance user experiences.
The resulting representations of HTML elements are more informative for the agent to take action.
arXiv Detail & Related papers (2024-02-06T23:52:10Z) - Graph Enhanced BERT for Query Understanding [55.90334539898102]
query understanding plays a key role in exploring users' search intents and facilitating users to locate their most desired information.
In recent years, pre-trained language models (PLMs) have advanced various natural language processing tasks.
We propose a novel graph-enhanced pre-training framework, GE-BERT, which can leverage both query content and the query graph.
arXiv Detail & Related papers (2022-04-03T16:50:30Z) - A Graph Representation of Semi-structured Data for Web Question
Answering [96.46484690047491]
We propose a novel graph representation of Web tables and lists based on a systematic categorization of the components in semi-structured data as well as their relations.
Our method improves F1 score by 3.90 points over the state-of-the-art baselines.
arXiv Detail & Related papers (2020-10-14T04:01:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.