SU($N$) symmetry with ultracold alkali dimers: weak dependence of scattering properties on hyperfine state
- URL: http://arxiv.org/abs/2410.19068v1
- Date: Thu, 24 Oct 2024 18:22:41 GMT
- Title: SU($N$) symmetry with ultracold alkali dimers: weak dependence of scattering properties on hyperfine state
- Authors: Bijit Mukherjee, Jeremy M. Hutson,
- Abstract summary: Experimentally accessible molecules offer large $N$ for both bosonic and fermionic systems.
We show that all the molecules studied have the properties required for SU($N$) symmetry.
We develop and test a semiclassical model of the spin dependence and find that it performs well.
- Score: 0.0
- License:
- Abstract: We investigate the prospect of using ultracold alkali diatomic molecules to implement many-body quantum systems with SU($N$) symmetry. Experimentally accessible molecules offer large $N$ for both bosonic and fermionic systems, with both attractive and repulsive interactions. We carry out coupled-channel scattering calculations on pairs of NaK, NaRb and NaCs molecules that are shielded from destructive collisions with static electric fields. We develop new methods to handle the very large basis sets required to include nuclear spins. We show that all the molecules studied have the properties required for SU($N$) symmetry: the collisions are principally elastic, and the scattering lengths depend only weakly on the spin states of the molecules. The rates of spin-changing inelastic collisions are very low. We develop and test a semiclassical model of the spin dependence and find that it performs well.
Related papers
- Hyperfine-to-rotational energy transfer in ultracold atom-molecule collisions [0.0]
Energy transfer between different mechanical degrees of freedom in atom-molecule collisions has been widely studied and largely understood.
Here, we directly observed the energy transfer from atomic hyperfine to molecular rotation in the $87$Rb.
The observations confirm that spin is coupled to mechanical rotation at short range and establish a benchmark for future theoretical studies.
arXiv Detail & Related papers (2024-07-11T23:20:14Z) - SU(N) magnetism with ultracold molecules [0.0]
Quantum systems with SU($N$) symmetry are paradigmatic settings for quantum many-body physics.
Ultracold molecules shielded from destructive collisions with static electric fields or microwaves exhibit SU($N$) symmetry.
They open the door to $N$ as large as $32$ for bosons and $36$ for fermions.
arXiv Detail & Related papers (2024-04-24T16:24:16Z) - Observation of trap-assisted formation of atom-ion bound states [0.0]
We report on observation of weakly bound molecular states formed between one ultracold $87$Rb atom and a single trapped $88$Sr$+$ ion.
We show that bound states can form efficiently in binary collisions, and enhance the rate of inelastic processes.
arXiv Detail & Related papers (2022-08-14T19:39:09Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Dynamical hadron formation in long-range interacting quantum spin chains [0.0]
We study scattering events due to meson collisions in a quantum spin chain with long-range interactions.
We show how novel hadronic boundstates, e.g. with four constituent particles akin to tetraquarks, may form dynamically in fusion events.
We propose two controllable protocols which allow for a clear observation of dynamical hadron formation.
arXiv Detail & Related papers (2022-04-12T09:06:47Z) - Rovibrational structure of the Ytterbium monohydroxide molecule and the
$\mathcal{P}$,$\mathcal{T}$-violation searches [68.8204255655161]
The energy gap between levels of opposite parity, $l$-doubling, is of a great interest.
The influence of the bending and stretching modes on the sensitivities to the $mathcalP$,$mathcalT$-violation requires a thorough investigation.
arXiv Detail & Related papers (2021-08-25T20:12:31Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.