Distributed Blind Source Separation based on FastICA
- URL: http://arxiv.org/abs/2410.19112v1
- Date: Thu, 24 Oct 2024 19:27:05 GMT
- Title: Distributed Blind Source Separation based on FastICA
- Authors: Cem Ates Musluoglu, Alexander Bertrand,
- Abstract summary: We propose a distributed independent component analysis (ICA) algorithm, which aims at identifying the original signal sources.
One of the most commonly used ICA algorithms is known as FastICA, which requires a spatial pre-whitening operation.
We show that an explicit network-wide pre-whitening step can be circumvented by leveraging the properties of the so-called Distributed Adaptive Signal Fusion framework.
- Score: 47.97358059404364
- License:
- Abstract: With the emergence of wireless sensor networks (WSNs), many traditional signal processing tasks are required to be computed in a distributed fashion, without transmissions of the raw data to a centralized processing unit, due to the limited energy and bandwidth resources available to the sensors. In this paper, we propose a distributed independent component analysis (ICA) algorithm, which aims at identifying the original signal sources based on observations of their mixtures measured at various sensor nodes. One of the most commonly used ICA algorithms is known as FastICA, which requires a spatial pre-whitening operation in the first step of the algorithm. Such a pre-whitening across all nodes of a WSN is impossible in a bandwidth-constrained distributed setting as it requires to correlate each channel with each other channel in the WSN. We show that an explicit network-wide pre-whitening step can be circumvented by leveraging the properties of the so-called Distributed Adaptive Signal Fusion (DASF) framework. Despite the lack of such a network-wide pre-whitening, we can still obtain the $Q$ least Gaussian independent components of the centralized ICA solution, where $Q$ scales linearly with the required communication load.
Related papers
- Faster Convergence with Less Communication: Broadcast-Based Subgraph
Sampling for Decentralized Learning over Wireless Networks [32.914407967052114]
$texttBASS$ is a broadcast-based subgraph sampling method designed to accelerate the convergence of D-SGD.
We show that $texttBASS$ enables faster convergence with fewer transmission slots compared to existing link-based scheduling methods.
arXiv Detail & Related papers (2024-01-24T20:00:23Z) - Generative Adversarial Learning of Sinkhorn Algorithm Initializations [0.0]
We show that meticulously training a neural network to learn initializations to the algorithm via the entropic OT dual problem can significantly speed up convergence.
We show that our network can even be used as a standalone OT solver to approximate regularized transport distances to a few percent error.
arXiv Detail & Related papers (2022-11-30T21:56:09Z) - Bandwidth-efficient distributed neural network architectures with
application to body sensor networks [73.02174868813475]
This paper describes a conceptual design methodology to design distributed neural network architectures.
We show that the proposed framework enables up to a factor 20 in bandwidth reduction with minimal loss.
While the application focus of this paper is on wearable brain-computer interfaces, the proposed methodology can be applied in other sensor network-like applications as well.
arXiv Detail & Related papers (2022-10-14T12:35:32Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Federated Learning for Distributed Spectrum Sensing in NextG
Communication Networks [3.509171590450989]
NextG networks are intended to provide the flexibility of sharing the spectrum with incumbent users.
A network of wireless sensors is needed to monitor the spectrum for signal transmissions of interest over a large deployment area.
To improve the accuracy, individual sensors may exchange sensing data or sensor results with each other or with a fusion center.
arXiv Detail & Related papers (2022-04-06T18:18:42Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
Federated learning (FL) is a key enabler for efficient communication and computing leveraging devices' distributed computing capabilities.
This paper proposes a novel learning framework by integrating FL and width-adjustable slimmable neural networks (SNNs)
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2022-03-26T15:06:13Z) - Provable Generalization of SGD-trained Neural Networks of Any Width in
the Presence of Adversarial Label Noise [85.59576523297568]
We consider a one-hidden-layer leaky ReLU network of arbitrary width trained by gradient descent.
We prove that SGD produces neural networks that have classification accuracy competitive with that of the best halfspace over the distribution.
arXiv Detail & Related papers (2021-01-04T18:32:49Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.