Research on Key Technologies for Cross-Cloud Federated Training of Large Language Models
- URL: http://arxiv.org/abs/2410.19130v1
- Date: Thu, 24 Oct 2024 19:57:17 GMT
- Title: Research on Key Technologies for Cross-Cloud Federated Training of Large Language Models
- Authors: Haowei Yang, Mingxiu Sui, Shaobo Liu, Xinyue Qian, Zhaoyang Zhang, Bingying Liu,
- Abstract summary: Cross-cloud federated training offers a new approach to addressing the resource bottlenecks of a single cloud platform.
This study analyzes the key technologies of cross-cloud federated training, including data partitioning and distribution, communication optimization, model aggregation algorithms, and the compatibility of heterogeneous cloud platforms.
- Score: 7.762524368844918
- License:
- Abstract: With the rapid development of natural language processing technology, large language models have demonstrated exceptional performance in various application scenarios. However, training these models requires significant computational resources and data processing capabilities. Cross-cloud federated training offers a new approach to addressing the resource bottlenecks of a single cloud platform, allowing the computational resources of multiple clouds to collaboratively complete the training tasks of large models. This study analyzes the key technologies of cross-cloud federated training, including data partitioning and distribution, communication optimization, model aggregation algorithms, and the compatibility of heterogeneous cloud platforms. Additionally, the study examines data security and privacy protection strategies in cross-cloud training, particularly the application of data encryption and differential privacy techniques. Through experimental validation, the proposed technical framework demonstrates enhanced training efficiency, ensured data security, and reduced training costs, highlighting the broad application prospects of cross-cloud federated training.
Related papers
- Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey [43.57122822150023]
This article surveys the literature on algorithms and technologies aimed at achieving efficient communication in large-scale distributed deep learning.
We first introduce efficient algorithms for model synchronization and communication data compression in the context of large-scale distributed training.
Next, we introduce efficient strategies related to resource allocation and task scheduling for use in distributed training and inference.
arXiv Detail & Related papers (2024-04-09T08:35:04Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Scalable, Distributed AI Frameworks: Leveraging Cloud Computing for
Enhanced Deep Learning Performance and Efficiency [0.0]
In recent years, the integration of artificial intelligence (AI) and cloud computing has emerged as a promising avenue for addressing the growing computational demands of AI applications.
This paper presents a comprehensive study of scalable, distributed AI frameworks leveraging cloud computing for enhanced deep learning performance and efficiency.
arXiv Detail & Related papers (2023-04-26T15:38:00Z) - On Efficient Training of Large-Scale Deep Learning Models: A Literature
Review [90.87691246153612]
The field of deep learning has witnessed significant progress, particularly in computer vision (CV), natural language processing (NLP), and speech.
The use of large-scale models trained on vast amounts of data holds immense promise for practical applications.
With the increasing demands on computational capacity, a comprehensive summarization on acceleration techniques of training deep learning models is still much anticipated.
arXiv Detail & Related papers (2023-04-07T11:13:23Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Outsourcing Training without Uploading Data via Efficient Collaborative
Open-Source Sampling [49.87637449243698]
Traditional outsourcing requires uploading device data to the cloud server.
We propose to leverage widely available open-source data, which is a massive dataset collected from public and heterogeneous sources.
We develop a novel strategy called Efficient Collaborative Open-source Sampling (ECOS) to construct a proximal proxy dataset from open-source data for cloud training.
arXiv Detail & Related papers (2022-10-23T00:12:18Z) - Nebula-I: A General Framework for Collaboratively Training Deep Learning
Models on Low-Bandwidth Cloud Clusters [39.85470606966918]
We introduce a general framework, Nebula-I, for collaboratively training deep learning models over remote heterogeneous clusters.
Nebula-I is implemented with the PaddlePaddle deep learning framework, which can support collaborative training over heterogeneous hardware.
Experiments demonstrate that the proposed framework could substantially maximize the training efficiency while preserving satisfactory NLP performance.
arXiv Detail & Related papers (2022-05-19T11:10:14Z) - Privacy-Preserving Serverless Edge Learning with Decentralized Small
Data [13.254530176359182]
Distributed training strategies have recently become a promising approach to ensure data privacy when training deep models.
This paper extends conventional serverless platforms with serverless edge learning architectures and provides an efficient distributed training framework from the networking perspective.
arXiv Detail & Related papers (2021-11-29T21:04:49Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.