Making Social Platforms Accessible: Emotion-Aware Speech Generation with Integrated Text Analysis
- URL: http://arxiv.org/abs/2410.19199v1
- Date: Thu, 24 Oct 2024 23:18:02 GMT
- Title: Making Social Platforms Accessible: Emotion-Aware Speech Generation with Integrated Text Analysis
- Authors: Suparna De, Ionut Bostan, Nishanth Sastry,
- Abstract summary: We propose an end-to-end context-aware Text-to-Speech (TTS) synthesis system.
It derives the conveyed emotion from text input and synthesises audio that focuses on emotions and speaker features for natural and expressive speech.
Our system showcases competitive inference time performance when benchmarked against state-of-the-art TTS models.
- Score: 3.8251125989631674
- License:
- Abstract: Recent studies have outlined the accessibility challenges faced by blind or visually impaired, and less-literate people, in interacting with social networks, in-spite of facilitating technologies such as monotone text-to-speech (TTS) screen readers and audio narration of visual elements such as emojis. Emotional speech generation traditionally relies on human input of the expected emotion together with the text to synthesise, with additional challenges around data simplification (causing information loss) and duration inaccuracy, leading to lack of expressive emotional rendering. In real-life communications, the duration of phonemes can vary since the same sentence might be spoken in a variety of ways depending on the speakers' emotional states or accents (referred to as the one-to-many problem of text to speech generation). As a result, an advanced voice synthesis system is required to account for this unpredictability. We propose an end-to-end context-aware Text-to-Speech (TTS) synthesis system that derives the conveyed emotion from text input and synthesises audio that focuses on emotions and speaker features for natural and expressive speech, integrating advanced natural language processing (NLP) and speech synthesis techniques for real-time applications. Our system also showcases competitive inference time performance when benchmarked against the state-of-the-art TTS models, making it suitable for real-time accessibility applications.
Related papers
- Emotional Dimension Control in Language Model-Based Text-to-Speech: Spanning a Broad Spectrum of Human Emotions [37.075331767703986]
Current emotional text-to-speech systems face challenges in mimicking a broad spectrum of human emotions.
This paper proposes a TTS framework that facilitates control over pleasure, arousal, and dominance.
It can synthesize a diversity of emotional styles without requiring any emotional speech data during TTS training.
arXiv Detail & Related papers (2024-09-25T07:16:16Z) - Facial Expression-Enhanced TTS: Combining Face Representation and Emotion Intensity for Adaptive Speech [0.13654846342364302]
FEIM-TTS is a zero-shot text-to-speech model that synthesizes emotionally expressive speech aligned with facial images.
The model is trained using LRS3, CREMA-D, and MELD datasets, demonstrating its adaptability.
By integrating emotional nuances into TTS, our model enables dynamic and engaging auditory experiences for webcomics, allowing visually impaired users to enjoy these narratives more fully.
arXiv Detail & Related papers (2024-09-24T16:01:12Z) - Controlling Emotion in Text-to-Speech with Natural Language Prompts [29.013577423045255]
We propose a system conditioned on embeddings derived from an emotionally rich text iteration that serves as prompt.
A joint representation of speaker and prompt embeddings is integrated at several points within a transformer-based architecture.
Our approach is trained on merged emotional speech and text datasets and varies prompts in each training to increase the generalization capabilities of the model.
arXiv Detail & Related papers (2024-06-10T15:58:42Z) - MM-TTS: A Unified Framework for Multimodal, Prompt-Induced Emotional Text-to-Speech Synthesis [70.06396781553191]
Multimodal Emotional Text-to-Speech System (MM-TTS) is a unified framework that leverages emotional cues from multiple modalities to generate highly expressive and emotionally resonant speech.
MM-TTS consists of two key components: the Emotion Prompt Alignment Module (EP-Align), which employs contrastive learning to align emotional features across text, audio, and visual modalities, and the Emotion Embedding-Induced TTS (EMI-TTS), which integrates the aligned emotional embeddings with state-of-the-art TTS models to synthesize speech that accurately reflects the intended emotions.
arXiv Detail & Related papers (2024-04-29T03:19:39Z) - Text to speech synthesis [0.27195102129095]
Text-to-speech synthesis (TTS) is a technology that converts written text into spoken words.
This abstract explores the key aspects of TTS synthesis, encompassing its underlying technologies, applications, and implications for various sectors.
arXiv Detail & Related papers (2024-01-25T02:13:45Z) - Visual-Aware Text-to-Speech [101.89332968344102]
We present a new visual-aware text-to-speech (VA-TTS) task to synthesize speech conditioned on both textual inputs and visual feedback of the listener in face-to-face communication.
We devise a baseline model to fuse phoneme linguistic information and listener visual signals for speech synthesis.
arXiv Detail & Related papers (2023-06-21T05:11:39Z) - ZET-Speech: Zero-shot adaptive Emotion-controllable Text-to-Speech
Synthesis with Diffusion and Style-based Models [83.07390037152963]
ZET-Speech is a zero-shot adaptive emotion-controllable TTS model.
It allows users to synthesize any speaker's emotional speech using only a short, neutral speech segment and the target emotion label.
Experimental results demonstrate that ZET-Speech successfully synthesizes natural and emotional speech with the desired emotion for both seen and unseen speakers.
arXiv Detail & Related papers (2023-05-23T08:52:00Z) - EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional
Text-to-Speech Model [56.75775793011719]
We introduce and publicly release a Mandarin emotion speech dataset including 9,724 samples with audio files and its emotion human-labeled annotation.
Unlike those models which need additional reference audio as input, our model could predict emotion labels just from the input text and generate more expressive speech conditioned on the emotion embedding.
In the experiment phase, we first validate the effectiveness of our dataset by an emotion classification task. Then we train our model on the proposed dataset and conduct a series of subjective evaluations.
arXiv Detail & Related papers (2021-06-17T08:34:21Z) - Reinforcement Learning for Emotional Text-to-Speech Synthesis with
Improved Emotion Discriminability [82.39099867188547]
Emotional text-to-speech synthesis (ETTS) has seen much progress in recent years.
We propose a new interactive training paradigm for ETTS, denoted as i-ETTS.
We formulate an iterative training strategy with reinforcement learning to ensure the quality of i-ETTS optimization.
arXiv Detail & Related papers (2021-04-03T13:52:47Z) - Limited Data Emotional Voice Conversion Leveraging Text-to-Speech:
Two-stage Sequence-to-Sequence Training [91.95855310211176]
Emotional voice conversion aims to change the emotional state of an utterance while preserving the linguistic content and speaker identity.
We propose a novel 2-stage training strategy for sequence-to-sequence emotional voice conversion with a limited amount of emotional speech data.
The proposed framework can perform both spectrum and prosody conversion and achieves significant improvement over the state-of-the-art baselines in both objective and subjective evaluation.
arXiv Detail & Related papers (2021-03-31T04:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.