Prototypical Hash Encoding for On-the-Fly Fine-Grained Category Discovery
- URL: http://arxiv.org/abs/2410.19213v1
- Date: Thu, 24 Oct 2024 23:51:40 GMT
- Title: Prototypical Hash Encoding for On-the-Fly Fine-Grained Category Discovery
- Authors: Haiyang Zheng, Nan Pu, Wenjing Li, Nicu Sebe, Zhun Zhong,
- Abstract summary: Category-aware Prototype Generation (CPG) and Discrimi Category 5.3% (DCE) are proposed.
CPG enables the model to fully capture the intra-category diversity by representing each category with multiple prototypes.
DCE boosts the discrimination ability of hash code with the guidance of the generated category prototypes.
- Score: 65.16724941038052
- License:
- Abstract: In this paper, we study a practical yet challenging task, On-the-fly Category Discovery (OCD), aiming to online discover the newly-coming stream data that belong to both known and unknown classes, by leveraging only known category knowledge contained in labeled data. Previous OCD methods employ the hash-based technique to represent old/new categories by hash codes for instance-wise inference. However, directly mapping features into low-dimensional hash space not only inevitably damages the ability to distinguish classes and but also causes "high sensitivity" issue, especially for fine-grained classes, leading to inferior performance. To address these issues, we propose a novel Prototypical Hash Encoding (PHE) framework consisting of Category-aware Prototype Generation (CPG) and Discriminative Category Encoding (DCE) to mitigate the sensitivity of hash code while preserving rich discriminative information contained in high-dimension feature space, in a two-stage projection fashion. CPG enables the model to fully capture the intra-category diversity by representing each category with multiple prototypes. DCE boosts the discrimination ability of hash code with the guidance of the generated category prototypes and the constraint of minimum separation distance. By jointly optimizing CPG and DCE, we demonstrate that these two components are mutually beneficial towards an effective OCD. Extensive experiments show the significant superiority of our PHE over previous methods, e.g., obtaining an improvement of +5.3% in ALL ACC averaged on all datasets. Moreover, due to the nature of the interpretable prototypes, we visually analyze the underlying mechanism of how PHE helps group certain samples into either known or unknown categories. Code is available at https://github.com/HaiyangZheng/PHE.
Related papers
- Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) aims to automatically cluster partially labeled data.
Unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories.
One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data.
We propose a Dynamic Conceptional Contrastive Learning framework, which can effectively improve clustering accuracy.
arXiv Detail & Related papers (2023-03-30T14:04:39Z) - HieNet: Bidirectional Hierarchy Framework for Automated ICD Coding [2.9373912230684573]
International Classification of Diseases (ICD) is a set of classification codes for medical records.
In this work, we proposed a novel Bidirectional Hierarchy Framework(HieNet) to address the challenges.
Specifically, a personalized PageRank routine is developed to capture the co-relation of codes, a bidirectional hierarchy passage encoder to capture the codes' hierarchical representations, and a progressive predicting method is then proposed to narrow down the semantic searching space of prediction.
arXiv Detail & Related papers (2022-12-09T14:51:12Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Automatically Discovering Novel Visual Categories with Self-supervised
Prototype Learning [68.63910949916209]
This paper tackles the problem of novel category discovery (NCD), which aims to discriminate unknown categories in large-scale image collections.
We propose a novel adaptive prototype learning method consisting of two main stages: prototypical representation learning and prototypical self-training.
We conduct extensive experiments on four benchmark datasets and demonstrate the effectiveness and robustness of the proposed method with state-of-the-art performance.
arXiv Detail & Related papers (2022-08-01T16:34:33Z) - Deep Asymmetric Hashing with Dual Semantic Regression and Class
Structure Quantization [9.539842235137376]
We propose a dual semantic asymmetric hashing (DSAH) method, which generates discriminative hash codes under three-fold constrains.
With these three main components, high-quality hash codes can be generated through network.
arXiv Detail & Related papers (2021-10-24T16:14:36Z) - Channel DropBlock: An Improved Regularization Method for Fine-Grained
Visual Classification [58.07257910065007]
Existing approaches mainly tackle this problem by introducing attention mechanisms to locate the discriminative parts or feature encoding approaches to extract the highly parameterized features in a weakly-supervised fashion.
In this work, we propose a lightweight yet effective regularization method named Channel DropBlock (CDB) in combination with two alternative correlation metrics, to address this problem.
arXiv Detail & Related papers (2021-06-07T09:03:02Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
We propose a new approach for binary classification from m U-sets for $mge2$.
Our key idea is to consider an auxiliary classification task called surrogate set classification (SSC)
arXiv Detail & Related papers (2021-02-01T07:36:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.