BitPipe: Bidirectional Interleaved Pipeline Parallelism for Accelerating Large Models Training
- URL: http://arxiv.org/abs/2410.19367v1
- Date: Fri, 25 Oct 2024 08:08:51 GMT
- Title: BitPipe: Bidirectional Interleaved Pipeline Parallelism for Accelerating Large Models Training
- Authors: Houming Wu, Ling Chen, Wenjie Yu,
- Abstract summary: BitPipe is a bidirectional interleaved pipeline parallelism for accelerating large models training.
We show that BitPipe improves the training throughput of GPT-style and BERT-style models by 1.05x-1.28x compared to the state-of-the-art synchronous approaches.
- Score: 5.7294516069851475
- License:
- Abstract: With the increasing scale of models, the need for efficient distributed training has become increasingly urgent. Recently, many synchronous pipeline parallelism approaches have been proposed to improve training throughput. However, these approaches still suffer from two major issues, i.e., pipeline bubbles caused by periodic flushing and extra communication due to the increasing number of pipeline stages. To this end, we propose BitPipe, a bidirectional interleaved pipeline parallelism for accelerating large models training. Specifically, a hybrid scheme of fusing interleaved pipelines with bidirectional pipelines is proposed to reduce the computational time of each single micro-batch and multiply the number of devices executing simultaneously. A V-shaped schedule with eager gradient synchronization is introduced to reduce and overlap the communication between devices. Experiments conducted on up to 32 GPUs show that BitPipe improves the training throughput of GPT-style and BERT-style models by 1.05x-1.28x compared to the state-of-the-art synchronous approaches. The code of our implementation is available at https://github.com/wuhouming/BitPipe.
Related papers
- Faster Multi-GPU Training with PPLL: A Pipeline Parallelism Framework Leveraging Local Learning [8.628231789161577]
We present PPLL (Pipeline Parallelism based on Local Learning), a novel framework that leverages local learning algorithms to enable effective parallel training across multiple GPU.
By utilizing queues to manage data transfers between GPU, PPLL ensures seamless cross- GPU communication, allowing multiple blocks to execute forward and backward passes in a pipelined manner.
Our results demonstrate that PPLL significantly enhances the training speed of the local learning method while achieving comparable or even superior training speed to traditional pipeline parallelism.
arXiv Detail & Related papers (2024-11-19T08:09:18Z) - AsyncDiff: Parallelizing Diffusion Models by Asynchronous Denoising [49.785626309848276]
AsyncDiff is a universal and plug-and-play acceleration scheme that enables model parallelism across multiple devices.
For the Stable Diffusion v2.1, AsyncDiff achieves a 2.7x speedup with negligible degradation and a 4.0x speedup with only a slight reduction of 0.38 in CLIP Score.
Our experiments also demonstrate that AsyncDiff can be readily applied to video diffusion models with encouraging performances.
arXiv Detail & Related papers (2024-06-11T03:09:37Z) - ReCycle: Resilient Training of Large DNNs using Pipeline Adaptation [2.0181279529015925]
ReCycle is a system designed for efficient training in the presence of failures.
It exploits the inherent functional redundancy in distributed training systems.
We show it achieves high training throughput under multiple failures.
arXiv Detail & Related papers (2024-05-22T21:35:56Z) - PeRFlow: Piecewise Rectified Flow as Universal Plug-and-Play Accelerator [73.80050807279461]
Piecewise Rectified Flow (PeRFlow) is a flow-based method for accelerating diffusion models.
PeRFlow achieves superior performance in a few-step generation.
arXiv Detail & Related papers (2024-05-13T07:10:53Z) - Efficient Asynchronous Federated Learning with Sparsification and
Quantization [55.6801207905772]
Federated Learning (FL) is attracting more and more attention to collaboratively train a machine learning model without transferring raw data.
FL generally exploits a parameter server and a large number of edge devices during the whole process of the model training.
We propose TEASQ-Fed to exploit edge devices to asynchronously participate in the training process by actively applying for tasks.
arXiv Detail & Related papers (2023-12-23T07:47:07Z) - Zero Bubble Pipeline Parallelism [6.7021820542657045]
Experimental evaluations show that our method outperforms the 1F1B schedule up to 23% in throughput under a similar memory limit.
We believe our results mark a major step forward in harnessing the true potential of pipeline parallelism.
arXiv Detail & Related papers (2023-11-30T10:40:34Z) - Pipe-BD: Pipelined Parallel Blockwise Distillation [7.367308544773381]
We propose Pipe-BD, a novel parallelization method for blockwise distillation.
Pipe-BD aggressively utilizes pipeline parallelism for blockwise distillation.
We implement Pipe-BD on PyTorch, and experiments reveal that Pipe-BD is effective on multiple scenarios, models, and datasets.
arXiv Detail & Related papers (2023-01-29T13:38:43Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
Deep learning applications benefit from using large models with billions of parameters.
Training these models is notoriously expensive due to the need for specialized HPC clusters.
We consider alternative setups for training large models: using cheap "preemptible" instances or pooling existing resources from multiple regions.
arXiv Detail & Related papers (2023-01-27T18:55:19Z) - TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale
Language Models [60.23234205219347]
TeraPipe is a high-performance token-level pipeline parallel algorithm for synchronous model-parallel training of Transformer-based language models.
We show that TeraPipe can speed up the training by 5.0x for the largest GPT-3 model with 175 billion parameters on an AWS cluster.
arXiv Detail & Related papers (2021-02-16T07:34:32Z) - BaPipe: Exploration of Balanced Pipeline Parallelism for DNN Training [9.551339069298011]
BaPipe is a pipeline parallelism training framework for distributed deep learning.
It automatically explores pipeline parallelism training methods and balanced partition strategies for distributed training.
BaPipe provides up to 3.2x speedup and 4x memory reduction in various platforms.
arXiv Detail & Related papers (2020-12-23T08:57:39Z) - Stochastic Optimization with Laggard Data Pipelines [65.20044914532221]
We show that "dataechoed" extensions of common optimization methods exhibit provable improvements over their synchronous counterparts.
Specifically, we show that in convex optimization with minibatches, data echoing affords speedups on the curvature-dominated part of the convergence rate, while maintaining the optimal statistical rate.
arXiv Detail & Related papers (2020-10-26T14:55:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.