Microplastic Identification Using AI-Driven Image Segmentation and GAN-Generated Ecological Context
- URL: http://arxiv.org/abs/2410.19604v1
- Date: Fri, 25 Oct 2024 14:57:09 GMT
- Title: Microplastic Identification Using AI-Driven Image Segmentation and GAN-Generated Ecological Context
- Authors: Alex Dils, David Raymond, Jack Spottiswood, Samay Kodige, Dylan Karmin, Rikhil Kokal, Win Cowger, Chris Sadée,
- Abstract summary: Current methods for microplastic identification in water samples are costly and require expert analysis.
We propose a deep learning segmentation model to automatically identify microplastics in microscopic images.
- Score: 0.09636431845459936
- License:
- Abstract: Current methods for microplastic identification in water samples are costly and require expert analysis. Here, we propose a deep learning segmentation model to automatically identify microplastics in microscopic images. We labeled images of microplastic from the Moore Institute for Plastic Pollution Research and employ a Generative Adversarial Network (GAN) to supplement and generate diverse training data. To verify the validity of the generated data, we conducted a reader study where an expert was able to discern the generated microplastic from real microplastic at a rate of 68 percent. Our segmentation model trained on the combined data achieved an F1-Score of 0.91 on a diverse dataset, compared to the model without generated data's 0.82. With our findings we aim to enhance the ability of both experts and citizens to detect microplastic across diverse ecological contexts, thereby improving the cost and accessibility of microplastic analysis.
Related papers
- CryoFM: A Flow-based Foundation Model for Cryo-EM Densities [50.291974465864364]
We present CryoFM, a foundation model designed as a generative model, learning the distribution of high-quality density maps.
Built on flow matching, CryoFM is trained to accurately capture the prior distribution of biomolecular density maps.
arXiv Detail & Related papers (2024-10-11T08:53:58Z) - Morphological Detection and Classification of Microplastics and Nanoplastics Emerged from Consumer Products by Deep Learning [1.21387493410444]
Plastic pollution presents an escalating global issue, impacting health and environmental systems.
Traditional methods for studying these contaminants are labor-intensive and time-consuming.
This paper introduces micro- and nanoplastics (MiNa), a novel and open-source dataset engineered for the automatic detection and classification of micro and nanoplastics.
arXiv Detail & Related papers (2024-09-20T17:56:25Z) - Accelerating Domain-Aware Electron Microscopy Analysis Using Deep Learning Models with Synthetic Data and Image-Wide Confidence Scoring [0.0]
We create a physics-based synthetic image and data generator, resulting in a machine learning model that achieves comparable precision (0.86), recall (0.63), F1 scores (0.71), and engineering property predictions (R2=0.82)
Our study demonstrates that synthetic data can eliminate human reliance in ML and provides a means for domain awareness in cases where many feature detections per image are needed.
arXiv Detail & Related papers (2024-08-02T20:15:15Z) - Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology [2.7280901660033643]
This work explores the scaling properties of weakly supervised classifiers and self-supervised masked autoencoders (MAEs)
Our results show that ViT-based MAEs outperform weakly supervised classifiers on a variety of tasks, achieving as much as a 11.5% relative improvement when recalling known biological relationships curated from public databases.
We develop a new channel-agnostic MAE architecture (CA-MAE) that allows for inputting images of different numbers and orders of channels at inference time.
arXiv Detail & Related papers (2024-04-16T02:42:06Z) - GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data [2.307414552248669]
This paper proposes GANsemble: a framework connecting data augmentation with conditional generative adversarial networks (cGANs) to generate class-conditioned synthetic data.
To our knowledge, this study is the first application of generative AI to synthetically create microplastics data.
arXiv Detail & Related papers (2024-04-10T21:23:13Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Machine Learning of polymer types from the spectral signature of Raman
spectroscopy microplastics data [3.441021278275805]
Microplastics that have been degraded by environmental weathering factors can offer less analytic certainty than samples of microplastics that have not been exposed to weathering processes.
Machine learning tools and techniques allow us to better calibrate the research tools for certainty in microplastics analysis.
arXiv Detail & Related papers (2022-01-14T13:34:03Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators.
Experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.
arXiv Detail & Related papers (2020-06-26T02:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.