ScreenWriter: Automatic Screenplay Generation and Movie Summarisation
- URL: http://arxiv.org/abs/2410.19809v1
- Date: Thu, 17 Oct 2024 07:59:54 GMT
- Title: ScreenWriter: Automatic Screenplay Generation and Movie Summarisation
- Authors: Louis Mahon, Mirella Lapata,
- Abstract summary: Video content has driven demand for textual descriptions or summaries that allow users to recall key plot points or get an overview without watching.
We propose the task of automatic screenplay generation, and a method, ScreenWriter, that operates only on video and produces output which includes dialogue, speaker names, scene breaks, and visual descriptions.
ScreenWriter introduces a novel algorithm to segment the video into scenes based on the sequence of visual vectors, and a novel method for the challenging problem of determining character names, based on a database of actors' faces.
- Score: 55.20132267309382
- License:
- Abstract: The proliferation of creative video content has driven demand for textual descriptions or summaries that allow users to recall key plot points or get an overview without watching. The volume of movie content and speed of turnover motivates automatic summarisation, which is nevertheless challenging, requiring identifying character intentions and very long-range temporal dependencies. The few existing methods attempting this task rely heavily on textual screenplays as input, greatly limiting their applicability. In this work, we propose the task of automatic screenplay generation, and a method, ScreenWriter, that operates only on video and produces output which includes dialogue, speaker names, scene breaks, and visual descriptions. ScreenWriter introduces a novel algorithm to segment the video into scenes based on the sequence of visual vectors, and a novel method for the challenging problem of determining character names, based on a database of actors' faces. We further demonstrate how these automatic screenplays can be used to generate plot synopses with a hierarchical summarisation method based on scene breaks. We test the quality of the final summaries on the recent MovieSum dataset, which we augment with videos, and show that they are superior to a number of comparison models which assume access to goldstandard screenplays.
Related papers
- DiscoGraMS: Enhancing Movie Screen-Play Summarization using Movie Character-Aware Discourse Graph [6.980991481207376]
We introduce DiscoGraMS, a novel resource that represents movie scripts as a movie character-aware discourse graph (CaD Graph)
The model aims to preserve all salient information, offering a more comprehensive and faithful representation of the screenplay's content.
arXiv Detail & Related papers (2024-10-18T17:56:11Z) - MovieSum: An Abstractive Summarization Dataset for Movie Screenplays [11.318175666743656]
We present a new dataset, MovieSum, for abstractive summarization of movie screenplays.
This dataset comprises 2200 movie screenplays accompanied by their Wikipedia plot summaries.
arXiv Detail & Related papers (2024-08-12T16:43:09Z) - Movie101v2: Improved Movie Narration Benchmark [53.54176725112229]
Automatic movie narration aims to generate video-aligned plot descriptions to assist visually impaired audiences.
We introduce Movie101v2, a large-scale, bilingual dataset with enhanced data quality specifically designed for movie narration.
Based on our new benchmark, we baseline a range of large vision-language models, including GPT-4V, and conduct an in-depth analysis of the challenges in narration generation.
arXiv Detail & Related papers (2024-04-20T13:15:27Z) - Select and Summarize: Scene Saliency for Movie Script Summarization [11.318175666743656]
We introduce a scene saliency dataset that consists of human-annotated salient scenes for 100 movies.
We propose a two-stage abstractive summarization approach which first identifies the salient scenes in script and then generates a summary using only those scenes.
arXiv Detail & Related papers (2024-04-04T16:16:53Z) - StoryBench: A Multifaceted Benchmark for Continuous Story Visualization [42.439670922813434]
We introduce StoryBench: a new, challenging multi-task benchmark to reliably evaluate text-to-video models.
Our benchmark includes three video generation tasks of increasing difficulty: action execution, story continuation, and story generation.
We evaluate small yet strong text-to-video baselines, and show the benefits of training on story-like data algorithmically generated from existing video captions.
arXiv Detail & Related papers (2023-08-22T17:53:55Z) - Movie101: A New Movie Understanding Benchmark [47.24519006577205]
We construct a large-scale Chinese movie benchmark, named Movie101.
We propose a new metric called Movie Narration Score (MNScore) for movie narrating evaluation.
For both two tasks, our proposed methods well leverage external knowledge and outperform carefully designed baselines.
arXiv Detail & Related papers (2023-05-20T08:43:51Z) - Temporal Perceiving Video-Language Pre-training [112.1790287726804]
This work introduces a novel text-video localization pre-text task to enable fine-grained temporal and semantic alignment.
Specifically, text-video localization consists of moment retrieval, which predicts start and end boundaries in videos given the text description.
Our method connects the fine-grained frame representations with the word representations and implicitly distinguishes representations of different instances in the single modality.
arXiv Detail & Related papers (2023-01-18T12:15:47Z) - Screenplay Quality Assessment: Can We Predict Who Gets Nominated? [53.9153892362629]
We present a method to evaluate the quality of a screenplay based on linguistic cues.
Based on industry opinions and narratology, we extract and integrate domain-specific features into common classification techniques.
arXiv Detail & Related papers (2020-05-13T02:39:56Z) - Text Synopsis Generation for Egocentric Videos [72.52130695707008]
We propose to generate a textual synopsis, consisting of a few sentences describing the most important events in a long egocentric videos.
Users can read the short text to gain insight about the video, and more importantly, efficiently search through the content of a large video database.
arXiv Detail & Related papers (2020-05-08T00:28:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.