Unsupervised Machine Learning for Detecting and Locating Human-Made Objects in 3D Point Cloud
- URL: http://arxiv.org/abs/2410.20006v1
- Date: Fri, 25 Oct 2024 23:20:57 GMT
- Title: Unsupervised Machine Learning for Detecting and Locating Human-Made Objects in 3D Point Cloud
- Authors: Hong Zhao, Huyunting Huang, Tonglin Zhang, Baijian Yang, Jin Wei-Kocsis, Songlin Fei,
- Abstract summary: This research introduces a novel task: detecting and identifying human-made objects amidst natural tree structures.
The proposed methodology consists of three stages: ground filtering, local information extraction, and clustering.
Experimental results demonstrate that the proposed ground filtering method outperforms previous techniques.
- Score: 4.325161601374467
- License:
- Abstract: A 3D point cloud is an unstructured, sparse, and irregular dataset, typically collected by airborne LiDAR systems over a geological region. Laser pulses emitted from these systems reflect off objects both on and above the ground, resulting in a dataset containing the longitude, latitude, and elevation of each point, as well as information about the corresponding laser pulse strengths. A widely studied research problem, addressed in many previous works, is ground filtering, which involves partitioning the points into ground and non-ground subsets. This research introduces a novel task: detecting and identifying human-made objects amidst natural tree structures. This task is performed on the subset of non-ground points derived from the ground filtering stage. Marked Point Fields (MPFs) are used as models well-suited to these tasks. The proposed methodology consists of three stages: ground filtering, local information extraction (LIE), and clustering. In the ground filtering stage, a statistical method called One-Sided Regression (OSR) is introduced, addressing the limitations of prior ground filtering methods on uneven terrains. In the LIE stage, unsupervised learning methods are lacking. To mitigate this, a kernel-based method for the Hessian matrix of the MPF is developed. In the clustering stage, the Gaussian Mixture Model (GMM) is applied to the results of the LIE stage to partition the non-ground points into trees and human-made objects. The underlying assumption is that LiDAR points from trees exhibit a three-dimensional distribution, while those from human-made objects follow a two-dimensional distribution. The Hessian matrix of the MPF effectively captures this distinction. Experimental results demonstrate that the proposed ground filtering method outperforms previous techniques, and the LIE method successfully distinguishes between points representing trees and human-made objects.
Related papers
- Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - OccAM's Laser: Occlusion-based Attribution Maps for 3D Object Detectors
on LiDAR Data [8.486063950768694]
We propose a method to generate attribution maps for 3D object detection in LiDAR point clouds.
These maps indicate the importance of each 3D point in predicting the specific objects.
We show a detailed evaluation of the attribution maps and demonstrate that they are interpretable and highly informative.
arXiv Detail & Related papers (2022-04-13T18:00:30Z) - Learning-based Point Cloud Registration for 6D Object Pose Estimation in
the Real World [55.7340077183072]
We tackle the task of estimating the 6D pose of an object from point cloud data.
Recent learning-based approaches to addressing this task have shown great success on synthetic datasets.
We analyze the causes of these failures, which we trace back to the difference between the feature distributions of the source and target point clouds.
arXiv Detail & Related papers (2022-03-29T07:55:04Z) - Weakly Supervised Object Localization as Domain Adaption [19.854125742336688]
Weakly supervised object localization (WSOL) focuses on localizing objects only with the supervision of image-level classification masks.
Most previous WSOL methods follow the classification activation map (CAM) that localizes objects based on the classification structure with the multi-instance learning (MIL) mechanism.
This work provides a novel perspective that models WSOL as a domain adaption (DA) task, where the score estimator trained on the source/image domain is tested on the target/pixel domain to locate objects.
arXiv Detail & Related papers (2022-03-03T13:50:22Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z) - Unsupervised Learning for Subterranean Junction Recognition Based on 2D
Point Cloud [3.8532191223676517]
This article proposes a novel unsupervised learning framework for detecting the number of tunnel junctions in subterranean environments based on acquired 2D point clouds.
We validate the developed framework using multiple data-sets, collected from multiple realistic simulations, as well as from real flights in underground environments.
arXiv Detail & Related papers (2020-06-07T18:36:56Z) - A Nearest Neighbor Network to Extract Digital Terrain Models from 3D
Point Clouds [1.6249267147413524]
We present an algorithm that operates on 3D-point clouds and estimates the underlying DTM for the scene using an end-to-end approach.
Our model learns neighborhood information and seamlessly integrates this with point-wise and block-wise global features.
arXiv Detail & Related papers (2020-05-21T15:54:55Z) - Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study [2.6205925938720833]
State of the art methods use deep neural networks to predict semantic classes for each point in a LiDAR scan.
A powerful and efficient way to process LiDAR measurements is to use two-dimensional, image-like projections.
We demonstrate various techniques to boost the performance and to improve runtime as well as memory constraints.
arXiv Detail & Related papers (2020-04-06T11:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.