Prompt Diffusion Robustifies Any-Modality Prompt Learning
- URL: http://arxiv.org/abs/2410.20164v1
- Date: Sat, 26 Oct 2024 12:36:25 GMT
- Title: Prompt Diffusion Robustifies Any-Modality Prompt Learning
- Authors: Yingjun Du, Gaowen Liu, Yuzhang Shang, Yuguang Yao, Ramana Kompella, Cees G. M. Snoek,
- Abstract summary: This paper introduces prompt diffusion, which uses a diffusion model to gradually refine the prompts to obtain a customized prompt for each sample.
For all prompt learning methods tested, adding prompt diffusion yields more robust results for base-to-new generalization, cross-dataset generalization, and domain generalization in classification tasks tested over 15 diverse datasets.
- Score: 43.35989471544046
- License:
- Abstract: Foundation models enable prompt-based classifiers for zero-shot and few-shot learning. Nonetheless, the conventional method of employing fixed prompts suffers from distributional shifts that negatively impact generalizability to unseen samples. This paper introduces prompt diffusion, which uses a diffusion model to gradually refine the prompts to obtain a customized prompt for each sample. Specifically, we first optimize a collection of prompts to obtain over-fitted prompts per sample. Then, we propose a prompt diffusion model within the prompt space, enabling the training of a generative transition process from a random prompt to its overfitted prompt. As we cannot access the label of a test image during inference, our model gradually generates customized prompts solely from random prompts using our trained, prompt diffusion. Our prompt diffusion is generic, flexible, and modality-agnostic, making it a simple plug-and-play module seamlessly embedded into existing prompt learning methods for textual, visual, or multi-modal prompt learning. Our diffusion model uses a fast ODE-based sampling strategy to optimize test sample prompts in just five steps, offering a good trade-off between performance improvement and computational efficiency. For all prompt learning methods tested, adding prompt diffusion yields more robust results for base-to-new generalization, cross-dataset generalization, and domain generalization in classification tasks tested over 15 diverse datasets.
Related papers
- Any-Shift Prompting for Generalization over Distributions [66.29237565901734]
We propose any-shift prompting: a general probabilistic inference framework that considers the relationship between training and test distributions during prompt learning.
Within this framework, the test prompt exploits the distribution relationships to guide the generalization of the CLIP image-language model from training to any test distribution.
The network generates the tailored test prompt with both training and test information in a feedforward pass, avoiding extra training costs at test time.
arXiv Detail & Related papers (2024-02-15T16:53:42Z) - Prompting Diffusion Representations for Cross-Domain Semantic
Segmentation [101.04326113360342]
diffusion-pretraining achieves extraordinary domain generalization results for semantic segmentation.
We introduce a scene prompt and a prompt randomization strategy to help further disentangle the domain-invariant information when training the segmentation head.
arXiv Detail & Related papers (2023-07-05T09:28:25Z) - Exploring Lottery Prompts for Pre-trained Language Models [46.66885465183664]
We explore the instance-level prompt and their generalizability.
We find that for every instance, there is almost always a lottery prompt that induces the correct prediction from the PLM.
Some strong lottery prompts have high performance over the whole training set.
arXiv Detail & Related papers (2023-05-31T02:17:04Z) - Boosted Prompt Ensembles for Large Language Models [38.402161594793775]
Methods such as chain-of-thought prompting and self-consistency have pushed the frontier of language model reasoning performance with no additional training.
We propose a prompt ensembling method for large language models, which uses a small dataset to construct a set of few shot prompts that together comprise a boosted prompt ensemble''
We show that this outperforms single-prompt output-space ensembles and bagged prompt-space ensembles on the GSM8k and AQuA datasets.
arXiv Detail & Related papers (2023-04-12T16:47:15Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
We propose Test-time Prompt Editing using Reinforcement learning (TEMPERA)
In contrast to prior prompt generation methods, TEMPERA can efficiently leverage prior knowledge.
Our method achieves 5.33x on average improvement in sample efficiency when compared to the traditional fine-tuning methods.
arXiv Detail & Related papers (2022-11-21T22:38:20Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
We use the regularization ability of Bayesian methods to frame prompt learning as a variational inference problem.
Our approach regularizes the prompt space, reduces overfitting to the seen prompts and improves the prompt generalization on unseen prompts.
We demonstrate empirically on 15 benchmarks that Bayesian prompt learning provides an appropriate coverage of the prompt space.
arXiv Detail & Related papers (2022-10-05T17:05:56Z) - IDPG: An Instance-Dependent Prompt Generation Method [58.45110542003139]
Prompt tuning is a new, efficient NLP transfer learning paradigm that adds a task-specific prompt in each input instance during the model training stage.
We propose a conditional prompt generation method to generate prompts for each input instance.
arXiv Detail & Related papers (2022-04-09T15:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.