Multiple kernel concept factorization algorithm based on global fusion
- URL: http://arxiv.org/abs/2410.20383v1
- Date: Sun, 27 Oct 2024 09:13:57 GMT
- Title: Multiple kernel concept factorization algorithm based on global fusion
- Authors: Fei Li, Liang Du, Chaohong Ren,
- Abstract summary: In unsupervised environment, to design or select proper kernel function for specific dataset, a new algorithm called Globalized Multiple Kernel(GMKCF)was proposed.
The proposed algorithm outperforms comparison algorithms in data clustering, such as Kernel K-Means(KKM), Spectral Clustering(SC), CF Kernel(KCF), Co-regularized multi-view spectral clustering(Coreg), and Robust Multiple KKM(RMKKM)
- Score: 9.931283387968856
- License:
- Abstract: Non-negative Matrix Factorization(NMF) algorithm can only be used to find low rank approximation of original non-negative data while Concept Factorization(CF) algorithm extends matrix factorization to single non-linear kernel space, improving learning ability and adaptability of matrix factorization. In unsupervised environment, to design or select proper kernel function for specific dataset, a new algorithm called Globalized Multiple Kernel CF(GMKCF)was proposed. Multiple candidate kernel functions were input in the same time and learned in the CF framework based on global linear fusion, obtaining a clustering result with high quality and stability and solving the problem of kernel function selection that the CF faced. The convergence of the proposed algorithm was verified by solving the model with alternate iteration. The experimental results on several real databases show that the proposed algorithm outperforms comparison algorithms in data clustering, such as Kernel K-Means(KKM), Spectral Clustering(SC), Kernel CF(KCF), Co-regularized multi-view spectral clustering(Coreg), and Robust Multiple KKM(RMKKM).
Related papers
- Fast Asymmetric Factorization for Large Scale Multiple Kernel Clustering [5.21777096853979]
Multiple Kernel Clustering (MKC) has emerged as a solution, allowing the fusion of information from multiple base kernels for clustering.
We propose Efficient Multiple Kernel Concept Factorization (EMKCF), which constructs a new sparse kernel matrix inspired by local regression to achieve memory efficiency.
arXiv Detail & Related papers (2024-05-26T06:29:12Z) - Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
Fuzzy K-Means clustering is a critical technique in unsupervised data analysis.
This paper proposes a novel Fuzzy textitK-Means clustering algorithm that entirely eliminates the reliance on cluster centroids.
arXiv Detail & Related papers (2024-04-07T12:25:03Z) - Accelerated sparse Kernel Spectral Clustering for large scale data
clustering problems [0.27257174044950283]
An improved version of the sparse multiway kernel spectral clustering (KSC) is presented in this brief.
The original algorithm is derived from weighted kernel principal component analysis formulated within the primal-dual least-squares support vector machine (LS-SVM) framework.
Sparsity is achieved then by the combination of the incomplete Cholesky decomposition (ICD) based low rank approximation of the kernel matrix with the so called reduced set method.
arXiv Detail & Related papers (2023-10-20T09:51:42Z) - On the Global Solution of Soft k-Means [159.23423824953412]
This paper presents an algorithm to solve the Soft k-Means problem globally.
A new model, named Minimal Volume Soft kMeans (MVSkM), is proposed to address solutions non-uniqueness issue.
arXiv Detail & Related papers (2022-12-07T12:06:55Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels.
This paper proposes a novel local sample-weighted multiple kernel clustering model.
Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algo-rithms.
arXiv Detail & Related papers (2022-07-05T05:00:38Z) - Provable Clustering of a Union of Linear Manifolds Using Optimal
Directions [8.680676599607123]
This paper focuses on the Matrix Factorization based Clustering (MFC) method which is one of the few closed form algorithms for the subspace clustering problem.
We reveal the connection between MFC and the Innovation Pursuit (iPursuit) algorithm which was shown to be able to outperform the other spectral clustering based methods.
arXiv Detail & Related papers (2022-01-08T02:36:25Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
Symmetric nonnegative factor matrix (SNMF) has demonstrated to be a powerful method for data clustering.
Inspired by ensemble clustering that aims to seek better clustering results, we propose self-supervised SNMF (S$3$NMF)
We take advantage of the sensitivity to code characteristic of SNMF, without relying on any additional information.
arXiv Detail & Related papers (2021-03-02T12:47:40Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - SimpleMKKM: Simple Multiple Kernel K-means [49.500663154085586]
We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM)
Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix.
We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error.
arXiv Detail & Related papers (2020-05-11T10:06:40Z) - Fast Kernel k-means Clustering Using Incomplete Cholesky Factorization [11.631064399465089]
Kernel-based clustering algorithm can identify and capture the non-linear structure in datasets.
It can achieve better performance than linear clustering.
computing and storing the entire kernel matrix occupy so large memory that it is difficult for kernel-based clustering to deal with large-scale datasets.
arXiv Detail & Related papers (2020-02-07T15:32:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.