Lodge++: High-quality and Long Dance Generation with Vivid Choreography Patterns
- URL: http://arxiv.org/abs/2410.20389v1
- Date: Sun, 27 Oct 2024 09:32:35 GMT
- Title: Lodge++: High-quality and Long Dance Generation with Vivid Choreography Patterns
- Authors: Ronghui Li, Hongwen Zhang, Yachao Zhang, Yuxiang Zhang, Youliang Zhang, Jie Guo, Yan Zhang, Xiu Li, Yebin Liu,
- Abstract summary: Lodge++ is a choreography framework to generate high-quality, ultra-long, and vivid dances given the music and desired genre.
To handle the challenges in computational efficiency, Lodge++ adopts a two-stage strategy to produce dances from coarse to fine.
Lodge++ is validated by extensive experiments, which show that our method can rapidly generate ultra-long dances suitable for various dance genres.
- Score: 48.54956784928394
- License:
- Abstract: We propose Lodge++, a choreography framework to generate high-quality, ultra-long, and vivid dances given the music and desired genre. To handle the challenges in computational efficiency, the learning of complex and vivid global choreography patterns, and the physical quality of local dance movements, Lodge++ adopts a two-stage strategy to produce dances from coarse to fine. In the first stage, a global choreography network is designed to generate coarse-grained dance primitives that capture complex global choreography patterns. In the second stage, guided by these dance primitives, a primitive-based dance diffusion model is proposed to further generate high-quality, long-sequence dances in parallel, faithfully adhering to the complex choreography patterns. Additionally, to improve the physical plausibility, Lodge++ employs a penetration guidance module to resolve character self-penetration, a foot refinement module to optimize foot-ground contact, and a multi-genre discriminator to maintain genre consistency throughout the dance. Lodge++ is validated by extensive experiments, which show that our method can rapidly generate ultra-long dances suitable for various dance genres, ensuring well-organized global choreography patterns and high-quality local motion.
Related papers
- Duolando: Follower GPT with Off-Policy Reinforcement Learning for Dance Accompaniment [87.20240797625648]
We introduce a novel task within the field of 3D dance generation, termed dance accompaniment.
It requires the generation of responsive movements from a dance partner, the "follower", synchronized with the lead dancer's movements and the underlying musical rhythm.
We propose a GPT-based model, Duolando, which autoregressively predicts the subsequent tokenized motion conditioned on the coordinated information of the music, the leader's and the follower's movements.
arXiv Detail & Related papers (2024-03-27T17:57:02Z) - Lodge: A Coarse to Fine Diffusion Network for Long Dance Generation Guided by the Characteristic Dance Primitives [50.37531720524434]
We propose Lodge, a network capable of generating extremely long dance sequences conditioned on given music.
Our approach can parallelly generate dance sequences of extremely long length, striking a balance between global choreographic patterns and local motion quality and expressiveness.
arXiv Detail & Related papers (2024-03-15T17:59:33Z) - Bidirectional Autoregressive Diffusion Model for Dance Generation [26.449135437337034]
We propose a Bidirectional Autoregressive Diffusion Model (BADM) for music-to-dance generation.
A bidirectional encoder is built to enforce that the generated dance is harmonious in both the forward and backward directions.
To make the generated dance motion smoother, a local information decoder is built for local motion enhancement.
arXiv Detail & Related papers (2024-02-06T19:42:18Z) - FineDance: A Fine-grained Choreography Dataset for 3D Full Body Dance
Generation [33.9261932800456]
FineDance is the largest music-dance paired dataset with the most dance genres.
To address monotonous and unnatural hand movements existing in previous methods, we propose a full-body dance generation network.
To further enhance the genre-matching and long-term stability of generated dances, we propose a Genre&Coherent aware Retrieval Module.
arXiv Detail & Related papers (2022-12-07T16:10:08Z) - Bailando: 3D Dance Generation by Actor-Critic GPT with Choreographic
Memory [92.81383016482813]
We propose a novel music-to-dance framework, Bailando, for driving 3D characters to dance following a piece of music.
We introduce an actor-critic Generative Pre-trained Transformer (GPT) that composes units to a fluent dance coherent to the music.
Our proposed framework achieves state-of-the-art performance both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-03-24T13:06:43Z) - Music-to-Dance Generation with Optimal Transport [48.92483627635586]
We propose a Music-to-Dance with Optimal Transport Network (MDOT-Net) for learning to generate 3D dance choreographs from music.
We introduce an optimal transport distance for evaluating the authenticity of the generated dance distribution and a Gromov-Wasserstein distance to measure the correspondence between the dance distribution and the input music.
arXiv Detail & Related papers (2021-12-03T09:37:26Z) - Learning to Generate Diverse Dance Motions with Transformer [67.43270523386185]
We introduce a complete system for dance motion synthesis.
A massive dance motion data set is created from YouTube videos.
A novel two-stream motion transformer generative model can generate motion sequences with high flexibility.
arXiv Detail & Related papers (2020-08-18T22:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.